A Virtual Reality Game to Explore Hyperbolic Geometry

Joris Rijsdijk - jarijsdijk@tudelft.nl

Responsible Professor: M. Skrodzki, Supervisor: R. Bidarra

1. Background

- Hyperbolic space is a type of geometry that is different from the Euclidean geometry we experience in the real world
- This research builds upon a software project called **Holonomy**, in which players explored a hyperbolic world in VR by walking in real life.
- In particular, the space is tiled using 5-order square tiling, as seen in Figure 1. • This means the space is tiled by squares, but each corner is connected to 5 squares instead of 4.

2. Problem Description

- Without the objective on screen, the space appeared to be Euclidean as Holonomy's environment was empty.
- It is impossible to design an infinite level beforehand, which is required as Holonomy does not restrict the player in where they move.

3. Research Question

• Does procedurally generating an environment immerse players more compared to an empty environment in a virtual hyperbolic world?

4. Proposed Solution

- The Wave Function Collapse (WFC) Algorithm can be used to populate the environment.
 - WFC is a constraint solver, that builds a solution to a problem by repeatedly propagating constraints, as seen in Algorithm 1.
- Hierarchy can be introduced to group tiles.
 - A cell first is assigned a biomes or tileset, then WFC tries to only use those tiles if they are compatible with its neighbours.
- We made the environment represent a park instead of a haunted house to feel more inviting, like in Figure 2.
- Constraints can also dictate per direction what edge can connect to it. This allows WFC to generate seemingly multi-tiled objects, such as ponds. We call these orientational constraints, as seen in Figure 3.

Figure 2: Old (Left) vs New Environment (Right)

Figure 3: Orientational Constraints

5. Evaluation

- Two groups of players **completed three levels** in Holonomy, where they had to navigate to an objective. • 15 people in Group A completed the levels in the old environment.

 - 8 people in Group B completed the levels in the procedurally generated environment.
 - As seen in **Figure 4**, Group A and B required mostly the **same time**, but Group B required **fewer steps**.
- Both groups answered an evaluation form at the end, the results are seen in Figure 5.
 - None of the questions were statistically significant, although one came close.
 - Group B thought they did worse than Group A, even though this is false.
 - It could be that players were getting distracted by the environment.
- Players also gave feedback after the experiment.
 - Players from Group A reported **completely ignoring the environment**, or even being confused by it.
 - Players from Group B were sometimes hesitant to walk on rivers or followed them to try to reach the objective.
- Both groups reported being over-reliant on the minimap for navigation.

steps (Right), for Group A (Blue) and Group B (Red)

6. Conclusion

- We can conclude that a procedurally generated environment immerses players more compared to an empty environment in a virtual hyperbolic world. Players from group B interact more with the environment compared to group A.
- Group B takes fewer steps to complete the objective, so we infer players in a populated environment are better at building an intuition for the space.

Algorithm 1 Wave Function Collapse					
1:	while an uncollapsed cell exists do				
2:	Cell $C \leftarrow$ GET any cell with lowest entropy				
3:	Tile $T \leftarrow$ Collapse C into any of its possible tiles				
4:	for all neighbours of C do				
5:	Remove possible tiles that are not compatible with T				
Algorithm 1: High level Implementation of Wave Function Collapse					

Survey Question	Group A Med	Group B Med	p- value
My navigation towards the objec- tive went well.	4	2.5	0.102
The minimap was very helpful with finding the objective.	6	6	0.969
The minimap was easy to read and understand.	5	4	0.404
I have a good understanding of hy-	3	3	0.895
I felt comfortable in the environ-	4	3.5	0.767
The environment helped me orien-	4	2.5	0.322
The environment helped me navi-	2	2	0.557
gate towards the objective.			

Figure 5: Results of evaluation form, p-value calculated using Wilcoxon rank sum test

7. Future Work

- Further user tests are needed to reach statistical significance.
- Additional tests without minimap could be conducted, to make sure both groups solely rely on the environment.