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1) Background
● Most Deep Reinforcement Learning (DRL) 

algorithms struggle to learn in sparse-reward 
settings.

● Sparse reward environments with discrete 
state-action spaces are understudied, because 
their continuous variant overshadows them.

● The bit-flipping environment introduced 
alongside HER[1] is used as implemented in 
Stable Baselines 3[2].

2) Research Question
What state-of-the-art DRL Algorithm is the most 
sample efficient in sparse reward environments with 
discrete state-action spaces?

3) Algorithms Chosen
1. Proximal Policy Optimization (PPO)[3] is chosen 

out of the Maximum Entropy RL approach.
2. Hindsight Experience Replay (HER)[2] is chosen 

and used with Deep Q-Networks as a baseline.
3. Quantile Regression Deep Q-Networks 

(QR-DQN)[4] are used out of the Distributional 
RL approach. 
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4) Results
● PPO performs well early on, but falls of rapidly after 

a certain cardinality of the search space.
● Out of PPO, DQN with and without HER, QR-DQN 

with and without HER, the most sample efficient 
approaches are DQN w/ HER and QR-DQN w/ HER.

      Below results are from the last round of experiments.
      On y-axis: reward collected, on x-axis: training episode 

5) Conclusions
● Using HER with off-policy alternatives is the most 

sample efficient approach out of the candidate 
algorithms.

● PPO’s ability to find sparse reward by exploration 
falls off in as the cardinality of the state space 
grows.

6) Future work 
● Compare more algorithms from the three 

approaches, or algorithms that combine them. 
● Implement different sparse-reward discrete 

state-action environments and test them. 
● Apply the knowledge gained to a real world 

problem that has sparse rewards and discrete 
state-action spaces.
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