Performing patient alignment utilising point-cloud surface registration techniques in HoloNav

Maarten Weyns m.b.m.weyns@student.tudelft.nl

Introduction

Traditional surgical navigation systems display navigation info on a screen

HoloNav project:

- Microsoft HoloLens as a surgical navigation device
- Use AR to show navigation data on the patient itself

Problem

Surgical navigation requires accurate alignment of pre-operative scan with patient

Research question:

"How can we perform patient alignment using . point-cloud surface registration algorithms?"

Problem with registration algorithms:

- They require similar and dense source and target • point clouds
- Not the case in this scenario

Method

- HoloLens depth sensor used to get detailed target point cloud
- Data unavailable → simulate from pre-operative scan

Data simulation:

Add noise, occlusion and sparsity .

Test different algorithms for rough point cloud alignment:

- Fast Point Feature Histograms (FPFH) [1] .
- Principal Component Analysis (PCA) [2] .
- Manual Point Matching

Use Iterative Closest Point (ICP) algorithm [3] for fine alignment

- Conclusion
- Performance depends on quality inuput data
- ICP is able to recover less accurate rough alignments

Performance of the algorithms:

PCA more resilient to noise than PFFH

Noise amount	FPFH	PCA	- Alignment error in mm after rough a
0	1.3434	1.3434	fine alignment on simulatied data. Re in red indicate failed alignments.
0.5	1.3402	1.34949	
1	1.47238	1.32688	
4.5	0.88746	1.13068	
5	322.1151	1.12898	
5.5	2505.255	1.1059	
6	5.74996	1.1059	

FPFH outperforms PCA in all other cases (sparsity and occlusion)

FPFH	PCA
1.10841	1.13809
1.1129	2460.321
1 08763	1 15165
1.00705	1.15105
1.06005	2488.618
1.03576	1.10652
	FPFH 1.10841 1.1129 1.08763 1.06005 1.03576

- Alignment error in mm after rough and fine alignment on simulatied data. Results in red indicate failed alignments..

Best results with manual point matching:

- Perfect alignment with 4+ matched points
- Surgeon inaccuracy has little impact on the performance

- Perform research with actual depth sensor data
- Research methods to extract patient from the rest of the 3D scene

[2] Nang, F., & Zhao, Z. (2017). A survey of iterative closest point algorithm. Traitement Du Signal. https://doi.org/10.3166/TS.34.57-75
[3] Wang, F., & Zhao, Z. (2017). A survey of iterative closest point algorithm. 2017 Chinese Automation Congress (CAC), 4395–4399. https://doi.org/10.1109/CAC.2017.8243553

Abdullah Thabit **Ricardo Marroquim**

0