
Formally verifying currying
via the product-exponential adjunction

CSE3000 Research Project - Q4 ‘2327th June 2023

Ciprian Stanciu Benedikt Ahrens, Lucas Escotg.c.stanciu@student.tudelft.nl

i. Introduction
Functional programming languages take advantage of
concepts and terms from category theory in order to struc-
ture data and computation.

How can we make it easier for computer science students
to understand categorical concepts in functional program-
ming and category theory?

We developed a library of category theory definitions, theo-
rems, proofs and examples in a computer proof assistant.
It targets beginners, therefore it skips proof automation and
limits future extensibility for closer correspondence to
maths.

The main result in the library is a proof of the adjunction
that generates currying as we know it in programming
languages.

Figure 1: Currying

ii. Method
Lean’s logical foundation allows us to be certain that if we
can write a theorem and its proof without any errors, then it
must be correct.

We followed established mathematical notation within the
library, included descriptive comments where needed in
proofs, and explicitly defined the lemmas involved.

Figure 2: Maths-Lean correspondence

v. Result and contributions
The final library proves the adjunction formed by the rela-
tion in figure 1 which is the equivalent of currying from a
category theoretic perspective, showing why currying works
in programming languages.

All the prerequisite concepts are built into the library (as a
consequence of formal proving), however simpler examples
are also included. For instance, the adjunction between
product and diagonal functors, showing that we can freely
create pairs.

iii. Existing work
There are already many existing category theory libraries,
but they are all targeted towards working categoricians who
use them to prove more complex theorems and not to
beginners.

Although they are incomparably broader in scope, our
library also implements simpler examples or concepts that
other implementations skip over.

iv. Design decisions
The process required taking decisions about the actual
implementation of the mathematical code. Some of them
were taken contrary to recommendations from literature,
showing the difference between libraries targeting extensi-
bility and ours.
◦ Family-of-collections-of-morphisms category definition.
◦ Structures instead of typeclasses.
◦ Bundling of parameters.
◦ Skolemization of existential qualifiers.
◦ Category universes.

