UniformGAN: generative adversarial networks in uniform probability spaces

1. Motivation and Background

Privacy is a key challenge for sharing data in industry due to
GDPR.

Generating synthetic tabular data using generative adversar-
ial networks is one solution to empower big discovery while
respecting the constraints of data privacy.

Existing solutions try to model the cross-correlation in the
GAN [1], but the data can be enhanced with the integral
probability transform leverged in copulaGAN[3] in order
to better capture the local dependency structure and improve
training time.

UniformGAN builds on state-of-the-art CTAB-GAN]2] in order to
improve cross correlation of synthetic data.
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Figure 1. CTAB-GAN Model
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2. Method
What is Uniform GAN?

UniformGAN is a tabular data generator which is based on CTAB-GAN
designed to improve modeling speed by transforming continuous variables
into uniform probability space in order for the GAN to make learning the
underlying distribution easier.

data is encoded to represent boolean, categorical datetime and nu-

merical types as numerical values.

Fit distributions and convert data using integral probabiliy transform,

mapping it into uniform probability space.

Then the discriminator in CTAB-GAN is fed the transformed data.
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Figure 2. Uniform GAN architechture

4, Results

3. Pipeline

To asses how well the synthesized data performs compared to the real data
we created a utility pipeline as seen in figure 3. A similar pipeline is created
for statistical similarity and privacy preservation.
Three metrics are considered with respect to machine learning utility;
e Accuracy difference, Area Under Curve (AUC) difference, and F1-
score difference.
To assess the statistical similarity we consider the average Wasserstein
distance, average Jensen-Shannon divergence, and correlation dis-
tance.
In order to assess the privacy we run a nearest neighbour analysis.
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Figure 3. Utility Pipeline
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