UniformGAN: generative adversarial networks in uniform probability spaces

Marc Visser, Supervisors: Zilong Zhao *, Lydia Chen *

* supervisors

1. Motivation and Background

- **Privacy** is a **key** challenge for **sharing data** in industry due to GDPR.
- Generating synthetic tabular data using generative adversarial networks is one **solution** to empower big discovery while respecting the constraints of data privacy.
- Existing solutions try to model the cross-correlation in the GAN [1], but the data can be enhanced with the integral probability transform leverged in copulaGAN[3] in order to better capture the local dependency structure and improve training time.

UniformGAN builds on state-of-the-art CTAB-GAN[2] in order to improve cross correlation of synthetic data.

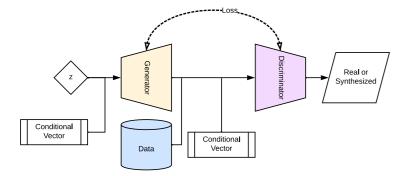


Figure 1. CTAB-GAN Model

REFERENCES

[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of the 27th NIPS - Volume 2, page 2672-2680, Cambridge, MA, USA, 2014.

[2] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen. Ctab-gan: Effective table data synthesizing. In Proceedings of The 13th Asian Conference on Machine Learning, volume 157, pages 97-112, 17-19 Nov 2021.

[3] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. GaussianCopula - The synthetic data vault SDV. Proceedings - 3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016, pages 399-410, 2016.

2. Method What is Uniform GAN?

UniformGAN is a tabular data generator which is based on CTAB-GAN designed to improve modeling speed by transforming continuous variables into uniform probability space in order for the GAN to make learning the underlying distribution easier.

- data is encoded to represent boolean, categorical datetime and numerical types as numerical values.
- Fit distributions and convert data using integral probabiliy transform, mapping it into uniform probability space.
- Then the discriminator in CTAB-GAN is fed the transformed data.

- score difference.
- tance.

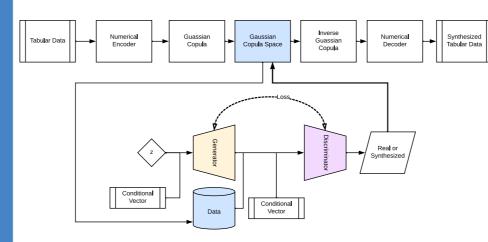


Figure 2. Uniform GAN architechture

rain classification model Logisti Random Adult Forest Covtype Credit ntrusior Linear SVM Loan MLP Figure 3. Utility Pipeline

4. Results

Model	ML Utility Difference			Statistical Similarity			Privacy Preservation					
							DCR			NNDR		
	Accuracy	AUC	F1-score	Avg JSD	Avg WD	Diff.Corr.	R&S	R	S	R&S	R	S
UniformGAN	8.708	0.115	0.176	0.013	0.0761	3.210	1.373	0.308	0.958	0.782	0.421	0.623
CTAB-GAN	11.205	0.134	0.205	0.331	0.070	1.900	1.260	0.3088	1.0840	0.751	0.4219	0.620
Copulas	18.998*	0.189	0.323	0.0172	0.126	3.703	1.759	0.308	1.584	0.825	0.421	0.745
CopulaGAN	29.97	0.21	0.371	0.082	0.294	5.814	1.424	0.201	0.535	0.815	0.337	0.538
CTGAN	35.442*	0.232	0.356	0.047	0.221	4.57	1.304	0.232	0.831	0.749	0.347	0.61

Table 4: Results 50 epochs: Average over Adult, Covtype, Intrusion and Insurance

TUDelft

3. Pipeline

To asses how well the synthesized data performs compared to the real data we created a utility pipeline as seen in figure 3. A similar pipeline is created for statistical similarity and privacy preservation.

Three metrics are considered with respect to machine learning utility;

• Accuracy difference, Area Under Curve (AUC) difference, and F1-

To assess the statistical similarity we consider the average Wasserstein distance, average Jensen-Shannon divergence, and correlation dis-

• In order to assess the **privacy** we run a **nearest neighbour analysis**.

