1(';U Delft Effects of Maven Artifact Age on Dependency Resolution

Research Questions

1. Age vs Number of Errors
2. Most Common Errors

3. Strategies for Circumventing Errors

Example situation

Dependency deleted
... “But it works on my machine!”

&%

%

Year

Author: Gints Kulikovskis <G.K.Kulikovskis [at] student.tudelft.nl>

Responsible Professor: Sebastian Proksch

Example situation Dependency inaccessible

= 7 7#}"]‘
— — = =
A
83 kafka y
@ cops-lab /m lé"m " T v Further analysis
ps-lab / maven-explore _— & m
o e

v’ Pipeline for analysis

Share of exceptions encountered in the whole analysis pipeline, by type, per release year

Error Proportion (%)

R OO N)
A I A

Introduction

The study explores the impact of aging on projectsin Maven Central on dependency resolution. Maven
Central preservesall versions of artifacts, but dependencies often exist in alternative repositories that may
notenforce this policy, orasindividualfiles which may be unavailable in certain environments or
disappear. Repositories are sometimes taken offlineas well, such asin the case of JCenter [1]. We estimate
the proportion of artifacts that are nolongerresolvable, and whetherthisis more likely to happen with
olderartifacts.

Methods

The study employs a quantitative approach, using the Maven Explorer [2] indexerto assess the number of
artifactsin Maven Central with missing dependencies. The methodology involves indexing artifacts,
checkingforinsecure HTTP-based repositories, and gatheringinformation about the original dependencies
causingresolution failures. We built an extension to Maven Explorerthat structures data collected from
Maven Central using Maven Explorerinto arelational database, recording artifact creation dates, error
messages, and other metadata, and then analyzing this data using statistical methods. We encourage the
programto be reusedinfuture research, publishingitunderan MIT license: [3].

Results

The research found thatolderdependencies are more likely to be unresolvable: noticeadecline from
around 6% of artifacts published in 2006 to less than 1% of artifacts of 2021. We estimate thataround
0.3% of artifacts might fail to download due toreliance on non-HTTPS repositories, however,
recommendingto re-enable only those repositories that are strictly necessary for each individual project.
The study examines common exceptionsinthe Maven Explorer pipelineand identified popular causes
encountered perartifact release year. A detailed analysis of these dependencies showed specific missing
artifacts thatare useful to be researched.

Conclusion

The study concludesthatolder packagesin Maven Central are more prone to dependency resolution
failures, often due tothe absence of Transport Layer Security inrepositories. The research recommends
that developers and maintainers of popular open-source projects upload new versions of their libraries to
multiplerepositories to mitigate these issues. The findings highlight the importance of better dependency
management practices and active maintenance forenhancing the longevity of software projectsinthe
Maven ecosystem. To an extent, this study’s insights extend to other package management systems, such
as Debian’s APT (requires GPG signatures, as opposed to Maven), NuGet (hererepositories without TLS
cause a warning).

References:

[1] S. Greene, “JCenter Shutdown Impact on Gradle Builds,” Gradle, Feb. 2021. [Online]. Available: https://blog.gradle.org/icenter-shutdown.
[2] cOps lab, "Maven Explorer," GitHub, Jan 2024 [Online, accessed 28 Jan 2024]. Available: https://github.com/cops-lab/maven-explorer.

[3] G. Kulikovskis, "Maven Error Stats", Jan 2024 [Online, accessed 28 Jan 2024]. Available: https://gitlab.com/gintsk/maven-error-stats.

https://blog.gradle.org/jcenter-shutdown
https://github.com/cops-lab/maven-explorer
https://gitlab.com/gintsk/maven-error-stats

	Slide 1: Effects of Artifact Age on Dependency Resolution

