Recommender Systems via Covariance Neural Networks

How does sparsification affect the performance of covariance VNNs as graph-based collaborative filters?

Martin Angelov Supervisors: Elvin Isufi, Chengen Liu, Andrea Cavallo *EEMCS, TU Delft

Problem Statement

Covariance Neural Networks (VNNs) use the covariance of useritem interactions to construct graphs for graph-based collaborative filtering. However, empirical covariance matrices are:

- Often dense and noisy due to high dimensionality and limited data;
- Computationally expensive to process;
- Susceptible to overfitting from spurious correlations.

Goal: Investigate whether sparsifying these graphs through thresholding or probabilistic pruning improves generalization, stability, and runtime.

Mathematical Setup: Let $R \in \mathbb{R}^{n \times m}$ be the user-item rating matrix. The sample covariance is:

$$\Sigma = \frac{1}{n-1} (R - \bar{R})^{\top} (R - \bar{R})$$

- Filter out noise and weak correlations.
- Lower training time via sparser matrix operations.
- Improve interpretability and robustness.

Experimental Setup

- **Dataset:** MovieLens 100K (943 users × 1682 movies)
- Graph: Covariance from mean-centered rating matrix
- Model: LocalGNN variant with 2 layers, 100 epochs
- **Metrics:** RMSE, Training time, Sparsity (% non-zero)

Results Summary

Test RMSE and Sparsity

Method	Parameter	Test RMSE	Sparsity (%)
Standard		0.9973	0.0
Soft Thresholding	au = 8.74	0.9898	25.4
RCV	p = 0.25	0.9922	74.8
ACV	_	0.9923	57.9
Hard Thresholding	au = 8.74	1.0064	25.4

This matrix is treated as a graph adjacency matrix $A = \Sigma$, which is then sparsified to $\tilde{\Sigma}$ before being used in a GNN-like model:

$$H^{(l+1)} = \sigma(\tilde{\Sigma}H^{(l)}W^{(l)})$$

Sparsification Techniques

Hard Thresholding:

$$[\tilde{\Sigma}]_{ij} = \begin{cases} \Sigma_{ij}, & \text{if } |\Sigma_{ij}| \geq \tau \\ 0, & \text{otherwise} \end{cases}$$

Soft Thresholding:

 $[\tilde{\Sigma}]_{ij} = \operatorname{sign}(\Sigma_{ij}) \cdot \max(|\Sigma_{ij}| - \tau, 0)$

ACV (Absolute Covariance Value): Each entry is re-

tained with probability proportional to its magnitude:

Table 1: Performance of various sparsification methods.

Training Time (Avg)

Method	Parameter	Time (s)
Standard	_	62.93
Soft Thresholding	$\tau = 8.74$	52.99
RCV	p = 0.25	61.19
ACV	_	62.38

Table 2: Training time per method (avg. of 5 seeds).

Conclusions

- Soft Thresholding ($\tau = 8.74$) achieves best trade-off in accuracy and efficiency.
- ACV/RCV offer strong performance with minimal hyperparameter tuning.
 Sparsification reduces overfitting and improves interpretability.

 $p_{ij} \propto |\Sigma_{ij}|$

RCV (Ranked Covariance Value): Retain top-*p* proportion of covariances by magnitude. Motivations:

Takeaway: Sparsified covariance graphs improve VNN performance, robustness, and scalability in collaborative filter-ing.