Adaptive Feature Selection For Sparse Linear Bandits

How can we improve algorithm performance by selecting a dynamic subset of features at every round?

Author: Martin Damyanov (mdamyanov@tudelft.nl)

1. Background

Multi-armed bandits are a classic reinforcement learning problem where the *exploration-exploitation* dilemma is exemplified.

- Game that spans T rounds t = 1...T
- At round t pick an action a_i^t
- Receive reward $r_t(a_i^t)$. Try to maximize total reward.

How is the reward generated?

- Environment picks an unknown parameter θ^*
- Rewards are dot product of action vector and θ^* How do we measure performance?
- Regret is the difference between our total reward and the best we could have done

When θ^* is sparse only a *small subset* of the features will have an impact on *the reward*. If we learn those features we can improve the regret bounds.

2. SquareCB

- reward and draw from it
- Use different regression oracles to test different feature selection strategies
- Bayesian Regression with Feature Selection
- Feature Selection Sparse Linear Regression (FSSLR)

Supervisor: Julia Olkhovskaya

4. FS-SCB - Expert advice for model aggregation

It is important how we create the models. We consider two strategies.

- Random Feature Selection
- Bayesian Feature Selection

5. Experiments & Results

Relative comparison of all algorithm's performance

	•	•	•
Algorithm	Performance on large feature subsets	Performance on small feature subsets	Resource consumption
$\begin{array}{l} {\rm SquareCB} \\ {\rm FSSLR} \end{array} + \\ \end{array}$	Good	Poor	Low
SquareCB + Bayesian Feature Selection	Good	Medium	Medium
FS-SCB + Random Model Selection	Good	Medium	High
FS-SCB + Bayesian Model Selection	Very Good	Excellent	Very high

Regions in the hyperparameter space where the algorithms have a high probability of capturing the correct subset of features.

6. Conclusions

- I implemented two bandit algorithms with two feature selection strategies
- In both cases, **random** strategies were clearly outperformed by more sophisticated alternatives
- Treating models as expert advice allows for **imperfect selection** strategies to have much better performance

References for images

Slot machines: https://www.dreamstime.com/slot-machine simple-design-isolated-white-background-flatimage181537574 Dollar Sign: http://www.rawshorts.com Bandit: https://www.flaticon.com/free-icon/bandit_4751274

Regret in random models

SquareCB Sparse LR - 80 features

1600

Comparison of algorithms with random selection strategies. Reducing the number of features drastically *reduces the* performance