
 Introduction1.
Haskell's Lifecycle Gap:

Lacks understanding
compared to Java.
Few studies on Haskell's
lifecycle.

Prior Research:
Ryder and Thompson's paper:
limited case studies.
Lack of type-based metric
exploration.

2. Objective
Find correlations between metrics and bug occurrences in Haskell projects

Evaluating
Haskell Metrics
Looking for correlations between bug
occurrences and code metrics

3. Methodology
The metrics:

Code churn - measures the amount
of code modified over a small
period, often used to assess the
stability and maintainability of
software projects
PSIZ - quantifies the number of
pattern cases used in a function
that employs pattern-matching

The repositories:

The plan:

Author Nikola Dzhunov Affiliation Delft University of Technology

4. Results

6. Conclusion In this research, the effectiveness of Code Churn and Pattern Size (PSIZ) metrics in predicting bug-
prone areas in Haskell projects was investigated. The study found that Code Churn, which measures
the frequency and extent of code changes, is a significant indicator of potential bugs, with buggy
files exhibiting higher mean and median churn values. In contrast, the PSIZ metric, which measures
pattern complexity in functions, did not show a strong correlation with bug occurrences, as both
project-wide and buggy file medians were similar and close to 1. Future work could expand the
analysis to more diverse projects and explore additional metrics to improve predictive accuracy and
code quality insights.

Key Questions:
Metric Trends: Typical changes
in mean metric values across
lifecycles.

Bug Correlation: Identify
metrics correlating with bug
rates.

5. Discussion
Code Churn Analysis:

Buggy files have significantly higher mean
code churn values compared to the overall
project means, indicating frequent changes in
files with documented bugs.
Median code churn for repositories is 0,
suggesting most commits do not introduce
churn, while buggy files have a higher median,
implying frequent changes.
Larger projects with more commits tend to
have higher average code churn.

Pattern Size (PSIZ) Analysis:
PSIZ metric results are not as indicative of bug
occurrences as code churn.
Both project and buggy files have similar
median PSIZ values, mostly around 1, indicating
limited pattern complexity in functions.
Differences in PSIZ means between buggy files
and projects are not significant enough to
draw reliable conclusions about bug
correlation.

Takeaways:
Code churn appears to be a more reliable
metric for identifying files prone to bugs in
Haskell projects compared to PSIZ.
PSIZ may not effectively capture the
complexity related to bugs, as many files and
functions do not utilize extensive pattern
matching.

hackage-server cumulative code churn hackage-server PSIZ valueshackage-server non-cumulative code churn

Mean and Median Code Churn Values for
Projects and Buggy Files

Mean and Median PSIZ Values for Projects and
Buggy Files

Responsible
Professor

Supervisor

Examiner Koen Langendoen

Jesper Cockx

Leonhard Applis

