
Extrapolating Learning Curves: When Do Neural Networks Outperform Parametric Models?

Objectives
To analyze the performance of neural network and paramet-
ric approaches for sample-size learning curve extrapolation,
and determine the conditions under which either approach
might offer a consistent advantage.

Introduction

Why This Matters:
How much data do you really need to reach your performance
goal? It’s a key question in ML, and hard to answer, due to
the unpredictable shapes of learning curves [4].
Why Sample-Size Curves?
Unlike epoch-based curves, sample-size learning curves guide
early decisions, like whether to collect more data or which
model to try. They’re even useful for non-iterative models like
k-NN [4, 2].
What’s Been Tried:
• Parametric models (e.g., MMF4, WBL4) fit many tasks

well [3].
• Neural networks (e.g., LC-PFNs) can extrapolate from

limited samples [1].
Research Gap:
The comparative strengths of these approaches under different
conditions remain underexplored.

Research Questions
When do neural networks outperform paramet-
ric models in learning curve extrapolation?
We investigate:
1 Transfer scenario: Performance on unseen datasets

vs. unseen learners vs. both unseen?
2 Observable window: How does the amount of

observed data impact extrapolation quality?
3 Curve characteristics: Do certain learning curve

shapes favor neural or parametric approaches?

Methodology

We evaluate Learning Curve Prior-Data Fitted Net-
works (LC-PFNs) against:
• MMF4: (a · b + c · nd) / (b + nd)
• WBL4: c − b · e−a·nd

• POW4: a − b · (d + n)−c

The experimental framework uses the LCDB1.1 (learning
curves from 265 OpenML datasets and 24 learners). Perfor-
mance evaluation employs: (1) Symmetric Mean Abso-
lute Percentage Error (SMAPE) for relative error mea-
surement, (2) Mean Absolute Error (MAE), and (3)
Mean Squared Error (MSE).

Results

Figure 1: Average model rankings across four gen-
eralization scenarios (lower = better). POW4 consis-
tently outperforms all other models across all transfer scenario.
Surprisingly, LC-PFN ranks worst in familiar scenarios (KDKL,
UD) where it should theoretically excel, but shows improved
generalization to unseen data (UL, UDUL), suggesting reason-
able adaptability despite overall weaker performance.

Figure 2: Model ranking by learning curve cut-
off percentage (lower = better). LC-PFN demon-
strates its strongest competitive advantage at early cutoffs (10-
50%), ranking second-best when extrapolating from limited
data. However, performance degrades as more data becomes
available. POW4 maintains consistently superior performance
across all cutoffs, while MMF4 and WBL4 improve with more
observed data.

Critical Findings
Surprising Result: Parametric models consistently outperform LC-PFN across most scenarios!
• LC-PFN ranks 2nd best at early cutoffs (10-50%) but degrades as more data becomes available. This reveals neural networks

have great potential when extrapolating from limited early-stage data!
• LC-PFN shows slightly better performance on irregular curves (peaking/dipping) but still trails parametric models on

traditional & flat curves.

Figure 3: Normalized performance scores across curve
morphologies (higher = better). The dominance of para-
metric models may reflect LCDB 1.1’s 86% well-behaved curves
matching their own monotone assumptions. LC-PFN shows
slightly improved performance on irregular curves, suggesting po-
tential beyond dataset bias.

Figure 4: Recommended model by curve shape and
cutoff percentage (color intensity = recommen-
dation confidence). POW4 dominates early-stage ex-
trapolation (10-30%) across all curve shapes, while MMF4
becomes the preferred choice at higher cutoffs (50-90%), es-
pecially for complex Peaking/Dipping behaviors that exhibit
non-monotonic patterns. Darker colors indicate higher rec-
ommendation confidence.

Conclusions

Main Takeaway: Parametric models (especially POW4)
dominate across all scenarios, but LC-PFNs reveal specific
niches: (1) strong competitive performance in early-stage ex-
trapolation when data is scarce, (2) relatively better han-
dling of non-traditional curve patterns, and (3) reasonable
cross-domain adaptability despite overall weaker performance.
Dataset biases toward well-behaved curves may amplify para-
metric advantages, indicating that practitioners should con-
sider data availability and expected curve behavior when
choosing methods.
Impact: This work provides the first comprehensive com-
parison on realistic, challenging learning curves, offering clear
guidance for method selection in practice.

Future Research

Current LC-PFN Limitations:
• Fixed sequence length training - doesn’t handle

variable-length curves
• This leads to training distribution mismatch with real-world

curve diversity
• Training configuration simplicity
Future Directions:
• Develop a variable-length LC-PFN architecture
• Larger, more expressive LC-PFN configuration
• Explore the possibility of hybrid parametric-neural

ensemble approaches, to leverage both of their strengths
• Evaluate on dataset with balanced curve morphology

distributions to isolate model capabilities from dataset bias

Responsible Research

• All code, random seeds, and pre-trained LC-PFN model
weights are publicly available on GitHub to ensure full
reproducibility.

• LC-PFN training: approx. 1 GPU-hour, 0.25kWh
electricity, 0.125kg CO2 equivalent.

• LLMs assisted with language refinement and initial code
templates only. All research content, analysis, and
conclusions are original work.
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