
Template ID: conceptualizingcobalt  Size: 48x36

Goals: 

● Find projects with vulnerable dependencies (package-level 
vulnerabilities)

● Perform call graph analysis on many projects

● Investigate the reproducibility of the vulnerabilities manually

The FASTEN Project collects data about public software repositories and 
vulnerabilities. This data was used for this research. 

The diagram in the results section depicts the overall procedure.

Throughout the experiment, ideas to improve the detection of 
vulnerabilities through call graphs were developed.

Methodology

Effectiveness of using call graphs to detect propagated vulnerabilities
Jakub Nguyen
J.H.Nguyen@student.tudelft.nl

Supervised by Mehdi Keshani and Sebastian Proksch

Results

Background

The overall procedure on a high level:

Conclusion

● Package management tools like Maven1 are an integral 
part of software development nowadays

● Tools like Dependabot2  can alert developers about 
vulnerabilities in dependencies they use

● Such alerts are oftentimes false positives because the 
vulnerable part of the dependency is not touched

●  Current research conducted within the FASTEN Project3 
revolves around call graphs
○ Source code is statically analysed to generate call 

graphs
○ Call graphs are directed graphs where vertices 

represent methods and edges possible calls between 
them

● Call graphs can be used to analyse dependency networks 
on the method-level ➔ detecting whether vulnerable 
methods of your dependencies are actually reachable

The research questions:
How effective are call graphs to detect propagated vulnerabilities?
How well do such analysis results reflect the reproducibility of 
vulnerabilities?

● No reproducible vulnerabilities were found 
➢ A greater set of projects needs to be analysed to draw 

meaningful conclusions
● Descriptions of vulnerabilities oftentimes do not explicitly name 

related methods ➔ difficult to extract associated method names
➢ The initial data was over-approximating related methods 

resulting in precision loss

● Possible improvements to such detection revolve around
➢ Considering method parameters
➢ Order of execution of methods
➢ Certainty of method calls
➢ Precise vulnerability information

➔ Call graphs yield great potential for detecting propagated 
vulnerabilities.

I found ten vulnerable dependencies in your 
project.

My fine-grained analysis concludes that 
only two dependencies pose a risk in your 
project. Here are the affected methods: ...

Is my project really affected by all of those?

Great, I will look into it.

29.06.2021

Example vulnerability detection through call graphs:

The project is considered vulnerable because Method A can call a 
Method C.

Future work

● An experiment on a greater scale with an improved methodology

● Implementing the proposed improvements and testing 
performance in practice

● Eventually, a tool that conducts method-level analysis and gives 
recommendations just like Dependabot. (Possibly working on top 
of Dependabot)

References
1 https://maven.apache.org/
2 https://dependabot.com/
3 https://www.fasten-project.eu/


