Detecting Patterns in Train Position Data of Trains in Shunting Yards

Pyorail TUDelft

Analysis of Arrival Time Distributions and Delays

Introduction

- Shunting yards for parking, maintenance and cleaning of trains
- Train Unit Shunting Problem [1]
- Detect patterns -> identify recurring issues
- Gap in analysis of arrival times of trains
- Schedule additional staff
- Reduce delays in future
- Hypothesis: patterns will be found

Figure 1: Area Amersfoort with shunting yard (red)

Dataset

- Realization data of NS trains
- GPS points of each train unit
- 7 shunting yards in NL
- Period of 10 months
- Hosted in Azure environment

Background

- Clustering algorithms
- Hierarchical Clustering
- DBSCAN
- Related work
- New York City's subway system [2,3]

Research Question

What patterns can be identified in arrival time distributions of trains in shunting yards using train position data?

Figure 2a: Scatterplot of the arrival times

Figure 2b: Identified train series (using DBSCAN) Peak hours are highlighted in blue.

Related Literature

[1] R. Freling, R. M. Lentink, L. G. Kroon, and D. Huisman. Shunting of passenger train units in a railway station. In Transportation Science, 39(2):261-272, 2005.
[2] A. Halvorsen, D. Jefferson, T. Stasko, and A. Reddy. Algorithm for tracing train delays to incident causes. In Transportation Research Record, volume 2674, pages 264-273, 2020. Publisher: SAGE Publications Inc.
[3] S. Lehmann, A. Reddy, C. Samsundar, and T. Huynh. Automated train identification and train position monitoring at new york city transit. In Transportation Research Record, volume 2674, pages 843-854, 2020. Publisher: SAGE Publications Inc.

Methodology \& Results

1. Data Processing
2. Grouping similar train instances

- Cluster train units as trains
- Train series across days

3. Line graph visualization 4. Heatmap visualization
4. Detect patterns

Figure 4: Heatmap visualization of delays

Conclusion

- Align staff and equipment at busy moments
- Assign recurring trains to certain tracks
- Additional maintenance during fall/winter to avoid delays
- Hypothesis aligns with outcomes

Figure 3b: Line graph visualization (created algorithm)

Observations

Arrival time distributions

- Busy arriving moments
- Still trains during peak hour
- Train series after peak hours
- Less predictable outside busy moments
- No series during vacation breaks

Delays

- Less delay in summer
- More delay in fall \& winter

Future Work

- Expanding dataset
- Deep learning
- Broader context

