Finding Robust Schedules in the Stochastic RCPSP using Probabilistic Inference while using unmodified schedulers

1. Research Question

Can we use probabilistic inference to obtain robust schedules for the stochastic resource constrained project scheduling problem, without modifying the underlying deterministic scheduling algorithm?

2. Introduction

Problem

RCPSP with uncertain task durations

Goal

• Find schedule that performs well under uncertainty

Current limitations

- Need to modify existing scheduling algorithms
- Need to perturb or analyze created schedules

Proposed method

- Build a robustness distribution over all possible schedules
- Construct uncertainty model
- Use importance sampling to infer robustness distribution
- Theorize that robust schedule found at densest point of posterior

Desired properties

- Treat scheduler and simulator as black-box components
- No knownledge or access to schedules required

4. Experiment

Robustness = success rate of completing all tasks before their deadline (under simulated uncertainty)

Task 3 deadline of 8. Base schedule not robust.

EEMCS, Delft University of Technology, The Netherlands

Responsible Professor: Sebastijan Dumančić Supervisors: Reuben Gardos Reid, Issa Hanou Examiner: Merve Gürel

Kasper van Duijne

- · No knowledge or access of created schedules needed
- Robust schedule perfomance simulated, showing robustness

Limitations

- Not tested on larger instance
- Theorized performance issue and sparse robustness distribution in real-world instances

Future work

• Larger instances, different inference technique, other uncertainty, different robustness measure

Time