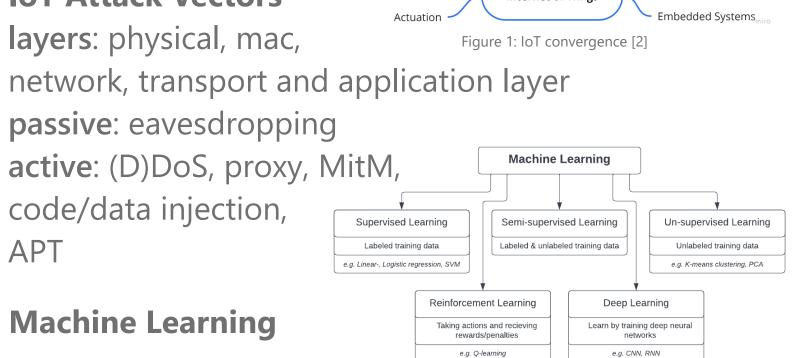
Machine Learning-based Techniques for Secure and Efficient IoT Data Management

Author: Tim Kramer t.kramer-2@student.tudelft.nl

Supervisor: Chhagan Lal

Responsible Professor: Mauro Conti


1 - Background

Internet of Things (IoT) device number is growing to 30 billion by 2030 [1]

IoT in critical infrastructure: e.g. healthcare, energy, autonomous vehicles, government

Resource constraints, different protocols, etc. make traditional security methods less suitable. [2]

IoT Attack Vectors

2 - Research Question

How does the use of Machine Learning methods support secure and efficient IoT data management?

3 - Methodology

Survey of Surveys

Literature Review

Study of SotA ML IoT Sec

Open Limitations

Figure 2: ML Algorithm Types

4 - Related Work

Survey, Year	Specialization	Security	Efficiency	Privacy
[3], 2020	General			•
[6], 2020	General			
[7], 2022	APT			
[8], 2022	RTS		•	
[9], 2022	ML-based attacks		0	

Table 1: Survey of surveys

5 - State-of-the-art: ML-based IoT Security

Metrics for evaluation of IoT and ML: CIA, ML-Score, Scalability, ...

General Techniques for

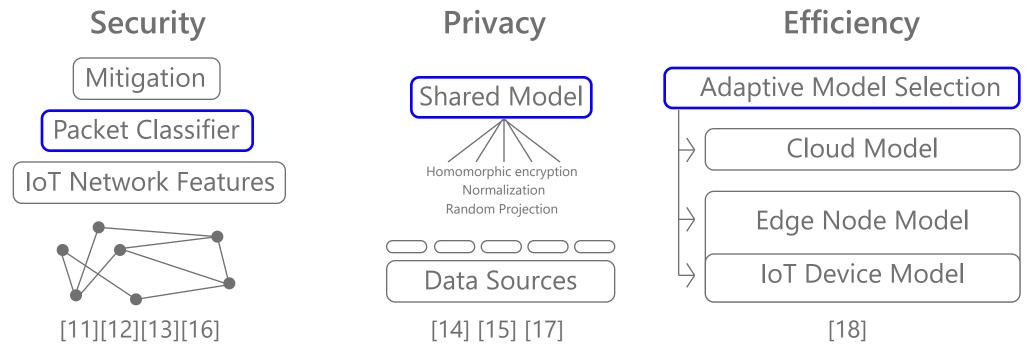


Figure 3: ML-based IoT Solution Structure

Paper, Year, Author	CIA	Likelihood	Damage	ML-Score	Scalability	Computational Cost
[11], 2018, Doshi	A	•	•	•	•	0
[12], 2019, Hamad	C, A, I	•	•	•	•	0
[13], 2020, Kayode	C, I	0	•	•	•	0
[14], 2021, Zhu	С	•		•	•	
[15], 2021, Jiang	С	•		•	•	0
[16], 2021, Chowdhury	I, A, C	0	•	•	0	0
[17], 2021, Jourdan	С	•	•	•	•	0
[18], 2022, V. Ngo,	I, C	•	•	•	•	•

Table 2: Comparison of studied state-of-the-art methods

6 - Discussion

- High accuracy of ML detection methods
- Good scalability of most approaches
- Some work well in Real-Time Systems
- High resource consumption for privacy preserving methods
- Imbalanced and homogenous data sets used for some papers

7 - Future Work and Conclusion

- Dataset availability and balance
- Targeting multiple attack vectors
- Computational limitations
- Preserving privacy

 $hierarchical edge\ computing: A\ contextual-band it\ approach.\ ACM Transactions\ on\ Internet\ of\ Things,\ 3(1):1-23,\ 2022.$

Promising further use of ML for IoT security and efficiency

References

[1] Lionel Sujay Vailshery, lot connected devices by use case 2030, Nov 2022.; [2] Ismail Butun, Patrik Osterberg, and Houbing Song. Security of the internet of things: Vulnerabilities, attacks, and countermeasures. IEEE Communications Surveys amp; Tutorials, 22(1):616-644, 2020; [4] Ismail Butun, Patrik Osterberg, and ibing Song. Securityof the internet of things: Vulnerabilities, attacks, and countermeasures. IEEE Communications Surveysamp; Tutorials, 22(1):616–644, 2020; [7 Zhiyan Chen, Jinxin Liu, Yu Shen, Murat Simsek, BurakKantarci, Hussein T. Mouftah, and Petar Djukic, Machine learning-enabled iot security: Open issues and challenges under advanced persistent threats, ACMComputing Surveys, 55(5):1–37, 2022.; [8] Jiang Bian, Abdullah Al Arafat, Haovi Xiong, Jing Li, Li Li, Hongyang Chen, Jun Wang, Dejing Dou, and Zhishan Guo. Machine learning in real-time internet of things (iot) systems: A survey. IEEE Internet of Things Journal, 9(11):8364-8386, 2022.; [9] Emilie Bout, Valeria Loscri, and Antoine Gallais. Howmachine learning changes the nature of cyberattacks oniot networks: A survey. IEEE Communications Surveysamp; Tutorials, 24(1):248–279, 2022.; [11] Rohan Doshi, Noah Apthorpe, and Nick Feamster. Machinelearning ddos detection for consume internet ofthings devices. 2018 IEEE Security and Privacy Workshops(SPW), 2018.; [12] Salma Abdalla Hamad, Wei Emma Zhang, Quan Z.Sheng, and Surya Nepal. Io device identification vianetwork-flow based fingerprinting and learning. 201918th IEEE International Conference On Trust, SecurityAnd Privacy In Computing And ommunications/13thIEEE International Conference On Big Data ScienceAnd Engineering (TrustCom/BigDataSE), 2019.; [13] Olumide Kayode and Ali Saman Tosur ep qnetworkfor enhanced data privacy and security of iottraffic. 2020 IEEE 6th World Forum on Internet ofThings (WF-IoT), 2020.; [14] Liehuang Zhu, Xiangyun Tang, Meng Shen, Feng Gao, Jie Zhang, and Xiaojiang Du. Privacy-preserving machinelearning training in iot aggregation scenarios. IEEE Internet of Things Journal, 8(15):12106–12118,2021.; [15] Linshan Jiang, Rui Tan, Xin Lou, and Guosheng Lin, On lightweight privacy-preserving collaborative learning for internet of things by ependent random projections. ACM Transactions on Internet of Things, 2(2):1–32, 2021.; [16] Morshed Chowdhury, Biplob Ray, Sujan Chowdhury, and Sutharshan Rajasegarar, A novel insider attackand machine learning based detection for the internet of things, ACM Transactions on Internet of Things, 2(4):1–23, 2021.; [17] Theo Jourdan, Antoine Boutet, Amine Bahi, and CaroleFrindel. Privacy-preserving jot framework for activityrecognition in personal healthcare monitoring. ACMTransactions on Computing for Healthcare, 2(1):1-22,2021.;[18] Mao V. Ngo, Tie Luo, and Tony Q. Quek. Adaptive anomaly detection for internet of things in