
1 - Background

2 - Research Question

4 - Results

3 - Methodology and Setup 5 - Conclusion

LEVERAGING E2E TEST CONTEXT FOR LLM-ENHANCED TEST CASES
Author: Mattheo de Wit (M.C.A.deWit@student.tudelft.nl)

Supervisor: Amir Deljouyi, Responsible professor: Andy Zaidman

6 - Limitations & Future Work

References:

Automated unit-test generating frameworks such as Search-Based
Software testing (SBST) optimise for criteria like code coverage and fault
detection, but often generate tests that are hard to understand due to
lack of meaningful test data and comments, as shown in Figure 1.

UTGen aims to improve the understandability of these test cases by
conducting Large Language Models (LLMs) in several post-processing
steps of EvoSuite, to replace test data with human-readable strings and
place explanatory comments [1]. This lacks realism and meaningfulness
however due to limited context (Figure 3).

MicroTestCarver (MTC) uses capture/replay techniques, storing
runtime data and objects from end-to-end (E2E) tests as trace logs, to
be able to generate meaningful and realistic test data. This approach
falls short however on the readability of generated tests, not being able
to provide explanatory comments [2].

This research introduces UTGen+, combining capture/replay with LLM-
enhanced SBST in an attempt to increase the understandability and
relevancy of generated test cases.

RQ: How does integrating contextual data from the trace logs of end-to-
end tests into the LLM-enhanced SBST approach in UTGen affect the
understandability and relevancy of generated test cases?

Test elements of interest: Comments, identifiers and test data

Hypothesis: Due to the provided context of how methods are acutally used,
the generated tests will more closely represent use case scenario's and will
therefore be more understandable and relevant as compared to UTGen.

Comments: The analysis of naturalness for comments reveals minimal
distinction between UTGen+ and Original UTGen (-7.8% in mean), as
can be seen in Figure 5. Figure 6 displays a slight decrease but a bit
more consistency in relevancy rating (-3.9% in mean). From the
qualitative answers we get the indication these decreases could be
explained by perceived formatting differens, although we have not
quantified this.

Identifiers: For identifiers, we have observed minimal differences in
perceived naturalness (-1.2%) and relevancy (-5.9%). Although we
expected this to increase, the relatively low complexity of selected test
cases might have contributed to UTGen being able to match UTGen+ in
this regard.

Test data: In terms of test data, UTGen+ demonstrates a marginal
improvement in naturalness compared to Original UTGen, although
the distributions are nearly identical (+5.2%). The relevancy of test
data saw substantial increase of +25.0% in mean rating, highlighting
UTGen+’s potential in generating contextually relevant test data.

Our findings reveal that while UTGen+ showed a marginal decrease in
the naturalness and relevancy of comments and identifiers, it
drastically improved the quality of the test data. More specific, the
relevancy of test data generated by UTGen+ was notably higher
compared to that produced by Original UTGen.

This suggests that the inclusion of contextual data from trace logs can
indeed enrich the content of generated test cases, making them more
applicable and valuable in real-world testing scenarios.

This partially confirms our initial hypothesis, that more
contextually informed test generation could bridge existing gaps in
automated test case development.

Figure 1: Test generated by EvoSuite

Figure 3: Test improved by UTGen Figure 4: Test improved by UTGen+

Figure 5: Violin graph from naturalness results

Figure 6: Violin graph from relevancy results

Implementation
UTGen+ consists of the following 5 phases, to enhance the LLM prompts with contextual data from trace logs:
 1) Traces are parsed into a classmap structure, to allow for easy method-call access during generation.
 2) Method statements from the generated test case of EvoSuite are matched with examples in traces.
 3) Context preparation: Arguments and Return Values of matched examples are converted to String representation.
 4) Pompt preparation: Context strings and calling objects are enhanced with human-like text for prompt inclusion.
 The result of this is visible in Figure 2, showing how the context will be presented to the LLM.
 5) Prompts are executed, and their respective responses are parsed by the original UTGen implementation.

Steps 2 to 5 are repeated for every generated test case, during the Test Data Refinement and Post-Processing stages of
UTGen. In this research, we have exclusively used GPT-4o as our LLM of choice.

User evaluation
We conducted a user study with 9 participants, aiming to verify our hypothesis. Over 2 rounds of 3-4 questions,
participants were asked to compare test cases of UTGen+, UTGen and EvoSuite, and rate the naturalness and
relevancy of the comments, identifiers and test data using a Likert scale. For the relevancy round, they were first
provided with additional background information, allowing them to asses whether the test elements are meaningful in
context.

Despite encouraging results, we identified several limitations:
The study's scope was restricted to a select number of software projects
and utilized only a single LLM configuration (GPT-4o with SUA-model).
Selected test cases in the user evaluation were relatively simple, meaning
they might not have fully maximized on the capabilities of UTGen+
The limited sample size and the similarity of participant backgrounds,
mean that the findings should be interpreted cautiously regarding their
generalizibility.

We recommend the following areas to conduct further research:
Exploring different configurations of LLMs and extending the approach
to include more diverse datasets and software environments
Investigating the effects of including examples based on similar method
arguments rather than random choice
Extending the types of statements analyzed, also including external leaf
methods and constructor calls, and potentially other runtime data.

These enhancement could improve the performance of UTGen+, and provide
deeper insights in the opportunities of integrating trace logs in LLM-
enhanced SBST.

Figure 2: Contextual data as included in UTGen+'s prompts

[1] A. Deljouyi. Understandable test generation through capture/replay and
llms (Lisbon, 2024)
[2] A. Deljouyi and A.E. Zaidman. Generating understandable unit tests
through end-to-end test scenario carving (SCAM 2023)

