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Transfer Learning

With the use of transfer learning, a network created 
for a specific use case can be retrained to fit another 
field. During this process most of the layers are fro-
zen and will be unchanged. This is a good approach 
of creating a convolutional neural network whenev-
er there is not much training data available as this 
prevents overfitting.
A side effect of this is that many layers are similar 
between the two networks. Whenever we apply 
caching to these layers, the effect of storing the data 
is duplicated as the data is used twice.
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Bulk and Linear make use of a single thread. DeepEye uses one 
thread for the convolutional layers and one for the fully connect-
ed layers. Partial uses a variable number of threads operating on 
the tasks that are ready to be performed.
In order for a layer to be finished, it needs to be loaded and exe-
cuted. A layer cannot be executed before it has been loaded and 
the previous layer has been executed providing the current layer 

with input. Whenever these prerequi-
sites are met, the task can be placed in 
the ready pool.
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Linear: As more cached layers can be reused, the 
loading time decreases and so does the overall execu-
tion time as it is single threaded. The loading of tasks 
takes up a significant amount of the total time allowing 
for visible differences in total runtime between the dif-
ferent tests. At 256M of memory, linear still performs 
relatively well and the runtime does not grow as fast 
when providing less memory than the other modes.

DeepEye: The proportions of running with 1G or 
512M of memory are getting more equal as more of 
the networks become similar. When all networks are 
similar the advantage of running with extra memory 
appears to be gone. A trade-off can be made, with on 
one side possibly decreasing the accuracy by using 
networks trained with transfer learning and on the 
other side investing more in better hardware.Partial: When running the inferences with partial 

loading, 512M of memory and not being able to reuse 
any layers, the runtime has a small spike. This is the 
brim of where the runtime will start growing rapidly if 
the memory is slightly decreased or the workload is in-
creased. Partial loading works the fastest of any mode 
when there is enough memory available, but does not 
scale as well as linear when this is not the case.

Partial Task Time: The execution times of the 
layers remains roughly the same, with the only excep-
tion being 512M with no reusable layers which has a 
memory shortage to run. The load time is larger than 
the execution time, meaning caching to lower this will 
decrease the overall runtime.

In the figures, the definition (X/Y) is used, where 
X is the amount of similar networks and Y is the 
total amount of networks.


