
Analysis of the effect of caching convolutional
network layers on resource constraint devices

Research Project - CSE3000 Wouter van Lil - Supervisors: Lydia Chen, Bart Cox & Masoud Ghiassi 25/06/2020

Transfer Learning

With the use of transfer learning, a network created
for a specific use case can be retrained to fit another
field. During this process most of the layers are fro-
zen and will be unchanged. This is a good approach
of creating a convolutional neural network whenev-
er there is not much training data available as this
prevents overfitting.
A side effect of this is that many layers are similar
between the two networks. Whenever we apply
caching to these layers, the effect of storing the data
is duplicated as the data is used twice.

Convolutional
layers

Fully connected
layers

Transfer Learning

IN OUT

IN OUT*

Similar layers

Modes of Operation

1

2

= Load Layer 1

= Execute Layer 2

- Bulk

1 12 3 2 3

- Linear

1 1 2 32 3

- DeepEye

1 1 2 2

3 3

4 4

4 4

4 4

Convolution-execution
thread (convolutional layers)

Data-loading
thread (fully connected layers)

- Partial

33
44

22 1
1

Waiting Task Pool

Worker
Threads

Ready Task Pool Finished Task Pool

Bulk and Linear make use of a single thread. DeepEye uses one
thread for the convolutional layers and one for the fully connect-
ed layers. Partial uses a variable number of threads operating on
the tasks that are ready to be performed.
In order for a layer to be finished, it needs to be loaded and exe-
cuted. A layer cannot be executed before it has been loaded and
the previous layer has been executed providing the current layer

with input. Whenever these prerequi-
sites are met, the task can be placed in
the ready pool.

Results

Caching

Linear

DeepEye

Partial

Partial Task Time

Linear: As more cached layers can be reused, the
loading time decreases and so does the overall execu-
tion time as it is single threaded. The loading of tasks
takes up a significant amount of the total time allowing
for visible differences in total runtime between the dif-
ferent tests. At 256M of memory, linear still performs
relatively well and the runtime does not grow as fast
when providing less memory than the other modes.

DeepEye: The proportions of running with 1G or
512M of memory are getting more equal as more of
the networks become similar. When all networks are
similar the advantage of running with extra memory
appears to be gone. A trade-off can be made, with on
one side possibly decreasing the accuracy by using
networks trained with transfer learning and on the
other side investing more in better hardware.Partial: When running the inferences with partial

loading, 512M of memory and not being able to reuse
any layers, the runtime has a small spike. This is the
brim of where the runtime will start growing rapidly if
the memory is slightly decreased or the workload is in-
creased. Partial loading works the fastest of any mode
when there is enough memory available, but does not
scale as well as linear when this is not the case.

Partial Task Time: The execution times of the
layers remains roughly the same, with the only excep-
tion being 512M with no reusable layers which has a
memory shortage to run. The load time is larger than
the execution time, meaning caching to lower this will
decrease the overall runtime.

In the figures, the definition (X/Y) is used, where
X is the amount of similar networks and Y is the
total amount of networks.

