Hybrid Graph Representation Learning for Money Laundering Detection

Author: Marius Frija (mfrija@tudelft.nl) Responsible Professor: Dr. Kubilay Atasu Supervisor: Halil Çağrı Bilgi

1. Introduction

- Money laundering is the process of making illegally obtained funds appear legitimate by moving them through a **series of** transactions and ultimately reintroducing them into the legal financial system. Traditional anti-money laundering systems suffer from high false positive rates and lack large-scale analytical capabilities.
- Financial transacation data can be modelled as graphs:
 - **Edges**: financial transactions
 - Nodes/vertices: financial entities
- Graph Neural Networks (GNNs) have recently shown strong potential in modeling transaction networks and detecting suspicious patterns through the local message passing mechanism [1, 2].
- The emergence of Graph Transformers (GTs) [4, 6] introduces attention-based mechanisms that overcome the limitations of GNNs by modeling more intricate long-range dependencies between the components of graphs. However, unifying the GNN and GT paradigms into a hybrid model for money laundering detection has been little explored.
- This research proposes GraphFuse, a hybrid architecture that unifies GNNs with a GT to generate rich edge-level representations for detecting money-laundering activities in financial transaction graphs. Furthermore, we investigate three configurations of the GT module for achieving a trade-off between performance and computational complexity.

2. Research Questions

- (1) How does the late-fusion GNN-GT architecture compare to standalone GNN and Graph Transformer models in terms of money laundering detection?
- (2) Under which global attention mechanism linear, sparse or full does the hybrid model achieve the **best trade-off** between **performance** and computational **efficiency**?

References

[1] Egressy, B., von Niederhäusern, L., Blanuša, J., Altman, E., Wattenhofer, R., and Atasu, K. (2024). Provably Powerful Graph Neural Networks for Directed Multigraphs. Proceedings of the AAAI Conference on Artificial Intelligence. [2] Bilgi, H. Ç., Chen, L. Y., and Atasu, K. (2024). Multigraph Message Passing with Bi-Directional Multi-Edge Aggregations (MEGA-GNN). arXiv preprint arXiv:2412.00241. [3] Corso, G., Cavalleri, L., Beaini, D., Liò, P., & Veličković, P. (2020). Principal Neighbourhood Aggregation for Graph Nets. Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 13260-13271. [4] Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., & Liu, T.-Y. (2021). Do Transformers Really Perform Badly for Graph Representation?. NeurIPS, 34, 28877–28888.

[5] Altman, E,. Blanuša, J., von Niederhäusern, L., Egressy, B., Anghel, A., and Atasu, K. (2023). Realistic Synthetic Financial Transactions for Anti-Money Laundering Models. NeurIPS 2023 Datasets and Benchmarks Track. arXiv:2306.16424.s

[6] Lin, J., Guo, X., Zhu, Y., Mitchell, S., Altman, E., and Shun, J. (2024). Fraudgt: A simple, effective, and efficient graph transformer for financial fraud detection. In Proceedings of the 5th ACM International Conference on AI in Finance (ICAIF). ACM, 2024.

Figure 2: Message Passing Mechanism

Transformer block

- transactions leveraging message passing.

- generating meaningful edge-level embeddings for the money laundering detection task. • Simple yet effective MLP(Concat(.)) layer.

Classification Results		
	AML Small-HI	AML Small-LI
GNN Baseline		
PNA [2]	61.20 ± 2.24	16.10 ± 2.38
MEGA-GNN Baseline		
MEGA-PNA [7]	73.10 ± 1.46	44.87 ± 1.62
+ Ego IDs	73.74 ± 1.55	45.37 ± 1.45
GT Baseline		
Multi-FraudGT [14]	76.13 ± 0.95	47.01 ± 2.22
GRAPHFUSE-PNA		
Linear Attention	66.12 ± 2.29	30.39 ± 2.24
Sparse Attention	64.24 ± 2.06	28.83 ± 1.94
Full Attention	64.29 ± 3.07	26.30 ± 1.08
GRAPHFUSE-MEGA-PNA		
Linear Attention (w/o EC,TS)	75.81 ± 1.14	46.66 ± 0.37
+ EC	75.86 ± 1.56	46.05 ± 1.06
+ TS	75.72 ± 0.85	47.13 ± 0.19
+ EC $+$ TS	76.89 ± 0.88	47.56 ± 0.36
Sparse Attention	76.29 ± 0.99	47.47 ± 0.17
Full Attention	76.40 ± 0.28	46.93 ± 0.60
Table 1: Classification performance (F1 score (%) ± std). Standard deviations are		
calculated over 5 runs with different random seeds.We highlight the best and		
second-best results		

This research has demonstrated the effectiveness of unifying GNNs with GTs for money laundering detection tasks. Our proposed hybrid model closely surpassess state-of-the-art performance by 0.76 p.p. on large synthetic datasets. Furthermore, we introduced three attention-wise configurations that offer a trade-off between scalability and fraud detection performance. **Future Work**

3. Proposed Model

Local Message Passing Module

- Captures local patterns among nearby accounts and their
- GNN Backbones: PNA [3] or MEGA-PNA [2] with edge features.

Global Attention Module

- Attention computation on edges captures more intricate illicit patterns in the extended sub-graph.
- Three GA mechanisms: Linear, Sparse and Full.

Late Fusion Layer

- Fuses together the local and global representations,

Edge Encodings

- Edge Centrality captures edge importance based on the centrality of its source and destination node.
- Transaction Signature injects relevant information about the financial activity of associated accounts.

 $\approx 15 \cdot 10^3$

 76.40 ± 0.28

4. Experimental Setup & Results

Training Efficiency and Fraud Detection Performance Analysis Size (# params) Epoch time (s) Avg. Throughput (trans/s) Test F1 (%) GRAPHFUSE-MEGA-PNA $212.6\cdot10^3$ 626.7 ± 4.0 $\approx 53 \cdot 10^3$ 76.89 ± 0.88 Linear Attention $162.5 \cdot 10^3$ 1441.9 ± 23.9 $\approx 21 \cdot 10^3$ 76.29 ± 0.99 Sparse Attention

 1648.1 ± 2.9

Table 2: Training and estimative inference efficiency comparison of the three GraphFuse model variants with different Global Attention Module configurations.

Observations

Full Attention

- The effectiveness of the hybrid model is supported by the improvement upon PNA and MEGA-PNA across both datasets and for all attention configurations.
- A notable gain of 0.76% over the state-of-the-art Multi-FraudGT model demonstrates the efficacy of the late-fussion GNN-GT architecture.
- The Linear Attention model variant achieves a favorable performance-efficiency trade-off.

Experimental Setup

- <u>Datasets</u>: IBM AML datasets [5] of synthetic & realistic financial transactions between individuals, companies and banks (Small-HI and Small-LI).
- Baselines: PNA [3], MEGA-PNA [2], Multi-FraudGT [6].

 $112.2 \cdot 10^{3}$

• Evaluation Metric: Minority (illicit) class F1 score.

5. Conclusions and Future Work

• Considering structure-aware positional encodings for increasing the expressivity of the Global Attention Module. • Incorporating the Reverse Message Passing [1] mechanism and investigating more complex Late Fusion mechanisms. • Assessing the effectiveness of the model on real-world transactional data.