

Author: Kerem Cakici

Introduction

- Machine learning growing
- Lack of expertise
- Enhancing machine learning education
- Assessments
- **Skill Circuit**
- Reliably show progress
- Formative vs Summative
- Learning Outcomes (Objectives)
- Bloom's taxonomy

Figure 1: Bloom's revised taxonomy [1]

Research Question

How to design assessments that reliably show progress on a module in machine learning for both students and teachers using Bloom's taxonomy and learning outcomes?

- What is a comprehensive set of learning outcomes of the module?
- What are the corresponding cognitive categories from Bloom's taxonomy of the learning outcomes?
- How can learning outcomes translate into sample assessment questions?
- How does Bloom's taxonomy help to find the appropriate way to assess a learning outcome?
- What are the ways of evaluating assessment questions?

Methodology

- Literature study
- Choose a module (Non-parametric density estimation)
- Identify problems in the initial learning outcomes
- Improve initial learning outcomes Revise & Classify learning outcomes Create an assessment design guideline Choose assessment methodologies for

- learning outcomes
- Create sample questions Evaluate by interviews Analyse the interviews by using conventional
- content analysis

Designing Assessment

should produce the same result in the same [2]

Efficient Assessment Methodology: Most

learning outcome reliably.

Guideline:

- Constructive-alignment
- Consider Bloom's classification
- Consider achievability
- Feasibility
- Using verbs instead of Bloom's classification "Know", "Find" and "Apply" mapped using past
- exams

[1] Armstrong, P. (2010). Bloom's Taxonomy. Vanderbilt University Center for Teaching. Retrieved [todaysdate] from

Directions in Traditional and Online Assessment. Routledge, 2004. isbn: 9780415335300.

A Systematic Way of Creating Assessments for Machine Learning Courses

Supervisor: Gosia Migut

- **Reliability:** If an assessment question is reliable, it conditions consistently, and these results should be matching with the "real" level of the test taker
- Validity: For an assessment question to be valid, it needs to measure what needs to be measured [2].
- feasible assessment methodology that can test the

References

- https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/.
- [2] Dunn Lee et al. The Student Assessment Handbook : New

Revised Learning	Outcomes
-------------------------	----------

Learning Outcome	Verb Used	Cognitive Level
Explain the difference between parametric and non- parametric density estimation.	Explain	Analysis
Explain Parzen density estimation and the purpose of window functions in detail.	Explain	Understandir
Know which parameter needs to be optimized in Parzen density estimation.	Know	Remembering
Find Parzen probability density function estimates at a given point using (Gaussian, box, tri, triweight) window function.	Find	Application
Explain k-nearest neighbors, the influence of param- eter k, how to optimize parameter k, and how to break ties in detail. (4th Question)	Explain	Understandir
Compute Euclidean, Manhattan, and Hamming dis- tance. (1st Question)	Compute	Application
Apply k-nearest neighbors with a specific k parame- ter, and with one of the above distance metrics.	Apply	Application
Implement the k-nearest neighbor classifier in Python. (2nd Question)	Implement	Application
Explain Naïve Bayes, and the effects of choosing Gaussian or Parzen as model per feature in detail.	Explain	Understandin
Explain the advantages and disadvantages of the above-mentioned methods. (3rd Question)	Explain	Analysis

	Verb Used	Cognitive Level	Assessment Methodology
tric and non-	Explain	Analysis	Open-ended Ques- tion
the purpose	Explain	Understanding	Open-ended Ques- tion
optimized in	Know	Remembering	Multiple-choice Question
on estimates ri, triweight)	Find	Application	Multiple-choice Question
ace of param- and how to	Explain	Understanding	Open-ended Ques- tion
lamming dis-	Compute	Application	Multiple-Choice Question
fic k parame- metrics.	Apply	Application	Multiple-Choice Question
classifier in	Implement	Application	Implementation Question
of choosing re in detail.	Explain	Understanding	Open-ended Ques- tion
tages of the	Explain	Analysis	Open-ended Ques- tion

Assessment Questions

- (Assesses learning outcome no. 6) Mark wants to choose which distance metric to use for his k-nearest neighbors algorithm with k = 2. To do this he first decides to plot a part of the data as the data is two-dimensional. He writes the labels of the points next to them. After he plots a partition of data, he wants to choose the distance metric that will classify a point in the origin as B. Which distance metrics should he choose?
 - A. Manhattan Distance
 - B. Euclidean Distance
 - C. Either of the metrics classifies a point in the origin as A
 - D. Either of the metrics classifies a point in the origin as B
- (Assesses learning outcome no. 8) Implement the following methods for k-nearest neighbors with k = 1:
- using_closest_point(points: list, new_point: (int, int)) # implement here retur # This method should return euclidean distance between two two-dimensional points def calculate_euclidian(x1, y1, x2, y2): # implement here return (Assesses learning outcome no. 10) Can you explain one advantage and one
- disadvantage k-nearest neighbor algorithm?
- (Assesses learning outcome no. 5) Can you explain two different ways to break ties in k-nearest neighbor algorithm?

- Teaching assistant (Feasible)

- Editing Rubric for open-ended questions Start-over

- Data Structures may be confusing to students Question 3 & 4:

- Revising learning outcomes for all modules Creating Assessment questions and improving the table
- Using statistical tests

Responsible Professor: Prof. Dr. M. Specht

Assessment Evaluation

- **Pre-Assessment evaluation:**
- Peer-review process
- Advice and checklist
- Student perspective
- Post-Assessment evaluation:
- More students \rightarrow More data
- "Easy" to see reliability and difficulty
 - Questionnaires and focus group **Question Ratings**

Evaluation of the Questions

- Question 1:
- Isolate the learning outcome (Validity) Question 2:
- No evaluation or training or testing steps
- Well-made questions
- Too open-ended

Future Work

Creating a taxonomy specifically for Machine Learning