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1. Background

Studying gene interactions within a cell can lead to a better
understanding of the cell’s behavior in different circumstances [1]. This
is a step towards effective (personalized) treatments for diseases, but
gathering cell samples for diseases where there is not much data is time-
consuming and costly —» What if we could apply knowledge from a
related domain with a larger quantity of data?

* Transfer learning: a versatile approach used to apply knowledge from
a domain with lots of data to a similar domain with limited data [2]. In
Machine Learning, this can be done through various fine-tuning
strategies [3], i.e. non-iterative strategies — known for their simplicity
& being less computationally demanding [2].

* Non-iterative TL: fine-tuning (FT) strategies where a model’s hyper-
parameters are adjusted without exhaustive exploration of parameter
search space [2].

Non-iterative FT strategies have been compared in the context of
classifying medical images [4], but not for predicting the sensitivity of
cancer cells exposed to treatments.

2. Research Question

What different strategies can be employed to fine-tune
Geneformer so that it is able to correctly identify a sample
taken from a cancer cell line as either untreated/not sensitive

to a treatment, or treated and sensitive to the treatment?
Topics to be covered to answer the research question:
* Predictive accuracy of evaluated FT strategies;
» Complexity of each fine-tuning strategy;

3. Method & Materials
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* Experiment: classifying the nutlin-3A dosage to which cancer cells
were exposed.

* Literature review performed to compile a list of popular fine-tuning
strategies — Strategies chosen for assessment: Selective Fine-tuning,
Linear Probing, Gradual Unfreeze (last/all) (LP-FT), Full Fine-tuning.

* Dataset: sciplex2 [5] - human lung adenocarcinoma cells exposed to
BMS345541, dexamethasone, Nutlin-3A, SAHA or DMSO vehicle
control.

* Input: samples from sciplex2 — cancer cells exposed to Nutlin-3A
with dosages between OpM and 125uM.

4, Experiment & Results

Geneformer (Figure 1) has been run using the following parameters: max
learning rate, 5 X 10-5; weight decay, 0.001; batch size, 12; no. of layers frozen,
depending on the strategy.

* Task: (1) pre-process the sample inputs through tokenization and modifying
some attribute labels; (2) split the samples into an eval set and a test set with
a ratio of 8:2; (3) fine-tune Geneformer on the eval set; (4) predict the nutlin-
3A dosage to which samples in the test set were exposed, measure accuracy.

* Measurements: confusion matrix, mean accuracy, F1-score.

D). Single-nuclei profiling of human dilated and hypertrophic cardiomyopathy:
reproduced to establish a baseline performance. Results obtained were in
accordance with the ones presented in the original manuscript: out-of-sample
accuracy of 87.31%, F1 score 0.85.

II). Two-fold classification - subset of sciplex2 with human
adenocarcinoma cells exposed to nutlin-3A (Figure 2):

* Dosages: OuM, 25uM;

* Results: average out-of-sample accuracy of 96.25%, F1 score 0.94.

lung

IIT). Four-class classification (Figure 3) - same dataset as in II). but:
* Dosages: 0.25uM, 2.5uM, 25uM, 125uM;
* Results: average out-of-sample accuracy of 68.05%, F1 score 0.65.

= l 1
2 L 1 6 -
| 00 Accuracy [0 F1-Score * 10 | 00 Accuracy [0 F1-Score * 10 ‘
1.30 1
—_ 1 N
g ).60 g
& - 0.20
5 e & :
e — I:
o 0.10 I:I |:I 0.50
g 0.80 0.70 -
= eciE) i
2]
—2.10
-1 —0.90
4 J
—4.50
72 T T T _6_5 2|(] - -
Linzar Frobing Gl Uinfrecze il Hine-tming Linear Probing Gradual Unfreeze Full Fine-tuning
Figure 2 Figure 3
Geneformer
0.1 07
n=81 0.3 0
- 0.6
e 00
1.0 - 0.3 e 01
E n=83 R Y N e 05
r S04 g e 10
2 5 e 100
= 100 0 ) - 0.3 e 500
o @ 100.0
-0.2
209 0.031 0.28 0 -01 5
0.0 -3
0.1 1.0 10.0 50.0
n=81 n=83 n=91 n=32
Predicted label UMAPL
Figure 4 Figure 5

]
TUDelft

Different FT methods are suitable for different tasks, similar to
medical imaging and other domains [2]. This depends on the task
and how knowledge is being stored within the weights.

Linear Probing is good for simple tasks and tasks where the source
and the target domain share a higher degree of similarity.

Contrary to the hypothesis that Full Fine-tuning would lead to a
model which is better suited for the downstream task, it resulted in
worse accuracy scores for both scenarios.

Gradual Unfreeze can be used for a more control over how much the
layers are fine-tuned (no. of epochs), at the cost of more complexity.

The confusion matrices from the strategies for the four-class task
show a clustering of the data into two groups: (1) cells exposed to
dosages < 25puM and (2) cells exposed to > 25uM (Figures 4,5).

6. Conclusions & Further Work

* There is no optimal solution. Different methods are suitable for
different tasks [2].

* Only non-iterative fine-tuning strategies were explored -
Expanding on the research by also exploring iterative TL
approaches.

* A limited set of samples was used: human lung adenocarcinoma
cells exposed to nutlin-3A. A more comprehensive evaluation
should be done in future works to assess the model’s ability to
perform on a more general task — sciplex3, more cell lines and
compounds.
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