Undoing Software eEngineering:
Demodularization of a SGLR Parser for
Performance (5ains

Parsing Througput: With inlined observers Parsing Throuhput: With integrated measurements

Parsing Throughput. No observers Parse Throuput: No observers + classes marked final

Background:

JSGLR2 is a Scannerless Generalized LR-parser implemented in Java. It is very
modular, each piece of the algorithm can be swapped out with different
Implementations.

However support for modularity inflated the codebase significantly.

m Modular
B Inlined

m Modular
B Inlined

5df3 webdsl sdf3 webdsl

350
350

300
300

250
250

1000 chars's
200

1000 chars's
200

150
150

Questions:

 What is the best way to strip out modularity from the parser?

* Does this “inlining” improve performance, and if so, how much?
 What components are the largest bottlenecks?

100
100

50

Language Language

Methodology:

 Replace dependency-injected components with hardcoded instances.
« Remove inheritance

« Change observer mechanism

Results: I -

m Modular
W Inlined

400

400

300
300

200

1000 chars's
200

1000 chars's

100
100

m Modular
B Inlined

Conclusion:
* |Inheritance removal gives improved performance
* Removing observers also gives better speeds. sdfe webdsi st webasi

Language Language

Nik Kapitonenko
M.Kapitonenko@tudelft.nl

Supervisors:
e t Jasper Denkers
Daniel Pelsmaeker



mailto:M.Kapitonenko@tudelft.nl

