Undoing Software eEngineering:
Demodularization of a SGLR Parser for
Performance (5ains

Parsing Througput: With inlined observers Parsing Throuhput: With integrated measurements

Parsing Throughput. No observers Parse Throuput: No observers + classes marked final

Background:

JSGLR2 is a Scannerless Generalized LR-parser implemented in Java. It is very
modular, each piece of the algorithm can be swapped out with different
Implementations.

However support for modularity inflated the codebase significantly.
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Questions:

 What is the best way to strip out modularity from the parser?

* Does this “inlining” improve performance, and if so, how much?
 What components are the largest bottlenecks?
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Methodology:

 Replace dependency-injected components with hardcoded instances.
« Remove inheritance

« Change observer mechanism

Results: I -
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Conclusion:
* |Inheritance removal gives improved performance
* Removing observers also gives better speeds. sdfe webdsi st webasi
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