

Enhancing the privacy and security of Hyperledger Fabric smart contracts using different encryption methods

1. INTRODUCTION

Hyperledger Fabric is an open source immutable distributed ledger technology (DLT) platform.

- Uses **blockchain technology**
- The main purpose is creating **private** and permissioned blockchain networks
- Currently used by many **enterprise companies**
- scenarios where **data must be kept private**, such as finance, trading, dispute resolution, healthcare record-keeping

2. RESEARCH QUESTION

How to enhance the level of protection of data stored in the *ledger of Hyperledger Fabric* networks using strong methods of encryption?

Author: Rado Stefanov tudelft@rstefanov.eu

Responsible professor Prof. Dr. Kaitai Liang

• Vulnerabilities in

- CouchDB, State Databases, peers, ledgers
- Might result in leaks of private data
- Increase the protection of Fabric against other currently unknown vulnerabilities
- Support scenarios where
- BUT members of the network still need to validate **business logic** using a smart contract

Symmetric encryption

- All peers have a symmetric key
- Each peer encrypts before storing to ledger
- Each peer decrypts after reading from ledger / state
- Key stored in secure docker container

- Drawbacks
- Higher memory and computational time required
- CouchDB range queries for numbers are not possible

6	asset1	blue	300	Tomoko
ß	asset1	KaWGxAe8ulNyKjBmz	i90/4RGyvO9CEASKZ	OlxU/FdjaYiSihFCsZxH

Fig 2: CouchDB asset, first without encryption, second with encryption

3. MOTIVATION

• Information needs to be preserved private,

4. METHODOLOGY

- Study Fabric documentation
- Analyse research on
 - Fabric security
 - encryption methods for blockchain networks
- Study **source code** of Hyperledger Fabric
- Implement and test possible **encryption methods**
- Execute experiments for time and speed performance of chosen encryption algorithms

5. CONTRIBUTION

Fig 1: Overview of symmetric encryption principle with 3 peers

[ZKP] Paillier encryption for voting use cases

- Use ZKP Range proof to validate vote validity without revealing vote value
- Use additive homomorphism to obtain final voting result
- Ensured determinism by ZKP for proving that encrypted number is zero

If 2 numbers are encrypted

- 23 -> b0ae84611cfa33aa12afe4546509
- 12 -> c7289957011b1bf315d245659eb1 b0ae84611cfa33aa12afe4546509 +
- c7289957011b1bf315d245659eb1 = 319a0a9e5daaa1029b5b7 = 319a0a9e5daaa1029b5b7 = (23 + 12)

- ZKPs

- Future Work

6. CONCLUSION

• Symmetric encryption • Enhances level of security • Developers should follow general security rules, such as strong CouchDB passwords, even when using encryption

• Useful in specific scenarios • More complicated and hard to implement

• Implement plugin for symmetric encryption • Extend ZKP research for Fabric