CALL-BY-PUSH-VAUE WITH ALGEBRAIC EFFECTS AND HANDLERS

]
TUDelft

Student: Stavros Alexandros Dimakos (S.A.Dimakos@student.tudelft.nl) Supervisor: Jaro Reinders Responsible professor: Casper Bach Poulsen

¢ Algebraic Effects and Handlers: A programming model for modularly
defining and handling computational effects such as state,
exceptions, or I/O in a programming language.

e Call-by-Push-Value (CBPV): A programming language evaluation
strategy that decomposes both call-by-value and call-by-name
paradigms into more primitive operations, providing a unified
framework that can simulate both call-by-value and call-by-name
behaviors [1].

¢ Extended Call-by-Push-Value: An enhancement of CBPV that includes

additional constructs to include lazy evaluation [2].
¢ Research Gap: Practical implementation of (CBPV) in mainstream
programming languages remains limited.

2. Research Question

How can algebraic effects and handlers be used to construct an
interface capable of achieving call-by-push-value in Haskell?

Sub-questions explored in the research:

e What are the benefits of call-by-push-value?

e How can we create an interface that can be used to translate
programs to different evaluation strategies?

e How can we define the behavior of the implementation using
mathematical laws?

e How can the implementation be proven correct w.r.t. its laws?

e How closely does the implementation and laws align with existing
theory found in the literature?

3. Free Monad

An algebraic effect can be described as an interface that includes a
collection of associated operations. First introduced in the context of
category theory, the free monad, Free f a, models these operations as
abstract syntax trees, with nodes for operations (Op) and values (Pure):

data Freefa
= Pure a
| Op (f (Free fa))

The Free Monad provides a flexible structure to encode a variety of

The implementation of thunk is the first step in our interface to manage
delayed computations typical of call-by-name and call-by-need
evaluation strategies. This is composed of two functions:

thunk :: Freefa->Freef (Thunkf a)
force :: Thunkfa->Freefa

The thunk function encapsulates computations in a data structure until
needed, and the force function triggers immediate computation. To
accommodate various evaluation strategies, three versions of each
function have been implemented: CBName, CBValue, and CBNeed. For
call-by-need, memoization ensures each thunk is evaluated only once
and described by the following function signature:

thunkCBNeed :: State [Pack] <f=>Freefa->Freeft
forceCBNeed :: State [Packl <f=>t->Freefa

In the type signatures we can see the following elements:
e t: A thunked computation.
e State: A signature functor that defines a Put and a Get operation
emulating memory.
e Pack: Aninteger value pair to store evaluated expressions.

5. Translation of Types and Terms

Using the implementation of thunks, we can now translate operations to
different evaluation strategies. To demonstrate this, we define a denote
function that maps the syntax of a lambda calculus-based language onto
effectful operations. By utilizing different thunk and force functions in
our denote function, we can alter the evaluation order. For the
translation of the language, we refer to the theory in Levy's paper [1].

Ap,..Ap FM:C UAL,... . UAR _(FEM":C"
x forcex
letxbe M. N let x be thunk M". M"
true produce true
false produce false
if M then N else N’ M" toz. if z then N" else N'"
inl M produce inl thunk M"
pm M as {inl x.N,inr x. N'} | M" toz. pmz as {inl x. N",inr x. N'"}
Ax. M Ax.M"
N‘M (thunk N") M"
print ¢; M printe; M"

Figure 1: Translation of CBN types and terms (Levy Paul Blain, 2001, p.56).

We use mathematical laws from existing research to ensure our
implementation's correctness. These laws make the execution of
programs written against our interface predictable and enable direct
reasoning about programs across different evaluation strategies, beyond
the meta-level abstraction.

(a) 8/n laws
thunk m ==force =
Letzvm = Appwv(Lamx m)

m
Pm (Inl ») (Inl (Lam x m4)) (Inr (Lam & my)) App v (Lam x my)
Pm (Inr v} (Inl (Lam = m,)) (Inr (Lam x my)) = Appwv (Lam x my)

Let & m (Var x)

(b) Sequencing laws

Lety (Letxr mn) p
Let & m (Lambda y 1)

Letzm (Lety n p)
Lambda y (Let = m n)

Figure 2: Equational theory

We prove a set of B and n-reduction laws that ensure different
expressions representing the same computation or value are treated
equivalently, as well as some sequential laws that enable restructuring of
expressions without breaking equivalence.

7. Limitations and Future Work

Limitations

¢ Creating modular components for operations described by algebraic
effects is not always feasible.

¢ Complexinteractions between effects often require global
knowledge, undermining modularity.

e Correctly scoping effect handlers in a modular system is challenging.

e Potential for unintended behavior or performance issues due to
scoping challenges.

Future Work
e Programmers can reason about programs written with different
evaluation strategies.
¢ Discover equivalences within and between evaluation strategies
based on implemented effects.
e Facilitate optimization and analysis of performance across different
evaluation strategies for various programs.

Bibliography:

[1] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor, Typed Lambda Calculi and Applications, pages 228-243, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg

operations and enables the modeling of side effects [3]. Our interface
leverages the Free Monad to showcase how different evaluation regimes
interact with these diverse operations and side effects.

[2] Dylan McDermott and Alan Mycroft. Extended call-by-push-value: Reasoning about effectful programs and evaluation order. In Lu’is Caires, editor, Programming Languages and Systems, pages 235-262, Cham, 2019. Springer International Publishing.
[3] WOUTER SWIERSTRA. Data types ‘a la carte. Journal of Functional Programming, 18(4):423-436, 2008.

