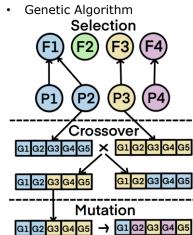

Genetic Algorithms for Inductive Program Synthesis

M.R. Tromp M.R. Tromp@student.tudelft.nl S. Dumančić

1. Background

Inductive Program Synthesis

ASCII Art Domain																	
										\rightarrow							


String Domain

"Genetic Algorithm" \rightarrow "GA"

Brute

- Best-first search
- Stuck in local optima

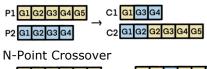
VanillaGP

Created to circumvent local optimaOutperforms Brute on 1/3 domains

2. Research question

Are there **alternatives** for the **components** of VanillaGP that will allow it to solve a higher percentage of tasks within the given domains during the same time frame?

3. VanillaGP Implementations


Selection:

Stochastic Universal Sampling (SUS)

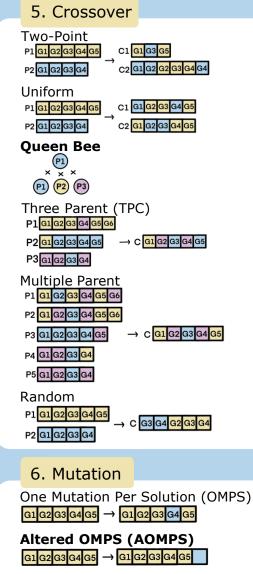
Crossover:

One-Point Crossover

Mutation:

Classical Mutation

G1G2G3G4G5 → G1G2G3G4G5 Uniform Mutation by Addition and Deletion G1G2G3G4G5 → G1 G2G3G4 G5


G1 G2 G4

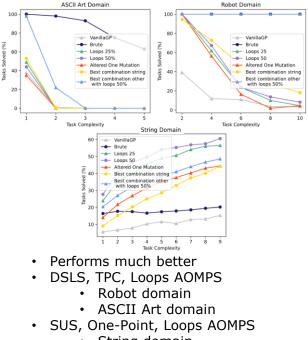
4. Selection

Roulette Wheel Selection

Lexicase Down-Sampled Lexicase (DSLS) Combined Lexicase **Tournament** Truncation

Interchanging Mutation G1G2G3G4G5 → G1G5G3G4G2

Scramble Mutation $G1G2G3G4G5G6 \rightarrow G1G5G2G4G3G6$


Reversing Mutation $G1G2G3G4G5G66 \rightarrow G1G5G4G3G2G66$

7. Combinations

Many combinations, most did not perform significantly better

 Main limitation is lack of loops in programs

One more alternative, AOMPS with more loops

String domain

8. Conclusions

Answer to research question: Yes

Best performance on domains:

- Robot: 100%
- ASCII Art: 24%
- String: 50%

Biggest limitations on performance:

- Max Iterations
- Time-out
- Lack of Loops