
Integral Caching using Online Mirror Descent
in a Networked Context QUENTIN OSCHATZ

q.oschatz@gmail.com
quentinoschatz.com

The Problem Existing Algorithms Bipartite OMD
Caches are used to serve file
requests that would otherwise need
to be sent to a remote server. These
caches cannot store all data that
could be requested, and file pop-
ularity may change over time. As
such, the policies must adapt
together with the data, learning in
an online manner.

Least Frequently/Recently Used (LFU/LRU)
Keep the most recently/frequently used files, always
add the last requested file. Results in inconsistent
performance across different request patterns.

Online Gradient Descent (OGD)
Use gradient descent on a cost function to move
towards an optimal state [2]. Can be expanded to
bipartite networks [2]. Can only handle one request
at a time, and uses additive update functions [3].

[1]L. Wang, S. Bayhan, and J. Kangasharju, “Optimal chunking and partial caching in information-centric networks,”
Computer Communications, vol. 61, pp. 48–57, May 2015, ISSN: 01403664.
[2] G. S. Paschos, A. Destounis, L. Vigneri and G. Iosifidis, "Learning to Cache With No Regrets," IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, 2019, pp. 235-243, doi: 10.1109/INFOCOM.2019.8737446.
[3] T. Si Salem, G. Neglia and S. Ioannidis, "No-Regret Caching via Online Mirror Descent," ICC 2021 - IEEE
International Conference on Communications, 2021, pp. 1-6, doi: 10.1109/ICC42927.2021.9500487.

Offline Learning
Use ML on historical data to generate a static cache
state. Relies on future requests following historical
trends.

When expanding the problem to
multi-cache systems, decisions must
now also take into account which
files are already stored in other
caches, as well as the network
topology.

Online Mirror Descent (OMD)
Generalized OGD using mirror descent [3]. Allows
multiplicative updates and request batching, de-
creasing performance overhead. Currently, the
algorithm is designed for only single cache systems.

Single cache:

Network:

Uxt
(yt) = ∑

n∈𝒩

xt,n ⋅ (C(0,n) − (yt,n ⋅ wn))

Uxt
(yt) =

N

∑
n=1

∑
i∈ℐ

xt,i,n(C(0,i, n) − C(vt, i, n))

C(vt, i, n) = ∑
j∈𝒥

(wi, j,n − wi, j−1,n)(1 − min {1,
j−1

∑
k=1

vt,k,n})

Regret
Regret is a metric that can be applied to caching
systems in order to examine their performance in an
adversarial setting [2]. There, requests are not sampled
from a distribution, but deliberately chosen to cause
cache misses [2]. Ideally, regret should grow sublinearly
compared to time, approaching 0 for high values of .
It has been shown that no deterministic integral policy
has a regret guarantee, meaning that any integral
policy without online learning (i.e. LRU , LFU) can be
“beaten” by an adversary [2].

t

RegretT(δ) = sup
{x1,…,xt}∈𝒳T {

T

∑
t=1

Cxt
(yt(δ)) −

T

∑
t=1

Cxt
(y*)}

The new utility function checks if the
requested file is already cached in a con-
nected cache, and does not reward these
redundant files.

Figure 2: Normalized Average Cost of bipartite OMD vs
optimal static in hindsight on a fixed-popularity trace.

Figure 3: Normalized Average Cost of bipartite OMD vs
naive, non-networked OMD and LFU and the optimal static
policy, on a circular adversarial trace.

Testing in a bipartite network with three
caches and two sources, with one cache
connected to both sources and the other
two connected only to one source, initial
results are very promising. Bipartite OMD
has a decreasing Normalized Average Cost,
and outperforms naive, non-networked
implementations. This implies sublinear
regret on this trace, though no formal
bounds have been proven.
The algorithm shows promise, bringing the
advantages of OMD to the bipartite setting.

Future work could include testing
hierarchical topologies, as well as proving
theoretical regret bounds for this algorithm.
Allowing for the use of adoptive learning
rates may also prove useful, as different
parts of the network serve different users
that may require different adaptability.
Additionally, in order to improve perfor-
mance, the more efficient projection
algorithm developed in [3] could be ex-
tended to the bipartite setting.

: Cost of cache miss
: Utility
: Cost

: Caching policy

C (0,n)/C (0,i , n)
Uxt(yt)
Cxt(yt)
δ

: Weight matrix
: Cache state
: Integral cache state
: time

w
y
v
t

: Set of caches
: Catalog
: Set of sources
: Optimal cache state

𝒥
𝒩
ℐ
y * Notation

Figure 1: A model of a bipartite caching network.
A caching policy must decide which files to cache
in the middle two caches in order to maximize the

number of requests served by them

OMD is not integral by default, but the
online coupled rounding scheme pro-
posed in [3] can create integral states
preserving regret bounds.

Conclusion

Future Work

Caches can store data in a frac-
tional or in an integral manner.
The former allows arbitrarily small
chunks of files to be stored, the
latter does not. In [1], the authors
show that, in practice, most caching
situations can be modeled in an
integral manner.

??

mailto:q.oschatz@gmail.com
http://www.quentinoschatz.com

