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The Problem Existing Algorithms Bipartite OMD
Caches are used to serve file 
requests that would otherwise need 
to be sent to a remote server. These 
caches cannot store all data that 
could be requested, and file pop-
ularity may change over time. As 
such, the policies must adapt 
together with the data, learning in 
an online manner.

Least Frequently/Recently Used (LFU/LRU)  
Keep the most recently/frequently used files, always 
add the last requested file. Results in inconsistent 
performance across different request patterns.

Online Gradient Descent (OGD)  
Use gradient descent on a cost function to move 
towards an optimal state [2]. Can be expanded to 
bipartite networks [2]. Can only handle one request  
at a time, and uses additive update functions [3]. 
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Offline Learning  
Use ML on historical data to generate a static cache 
state. Relies on future requests following historical 
trends.

When expanding the problem to 
multi-cache systems, decisions must 
now also take into account which 
files are already stored in other 
caches, as well as the network 
topology. 

Online Mirror Descent (OMD) 
Generalized OGD using mirror descent [3]. Allows 
multiplicative updates and request batching, de-
creasing performance overhead. Currently, the 
algorithm is designed for only single cache systems.

Single cache:  
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Regret
Regret is a metric that can be applied to caching 
systems in order to examine their performance in an 
adversarial setting [2]. There, requests are not sampled 
from a distribution, but deliberately chosen to cause 
cache misses [2]. Ideally, regret should grow sublinearly 
compared to time, approaching 0 for high values of .  
It has been shown that no deterministic integral policy 
has a regret guarantee, meaning that any integral 
policy without online learning (i.e. LRU , LFU) can be 
“beaten” by an adversary [2]. 

t

RegretT(δ ) = sup
{x1,…,xt}∈𝒳T {

T

∑
t=1

Cxt
(yt(δ )) −

T

∑
t=1

Cxt
(y*)}

The new utility function checks if the 
requested file is already cached in a con-
nected cache, and does not reward these 
redundant files.

Figure 2: Normalized Average Cost of bipartite OMD vs 
optimal static in hindsight on a fixed-popularity trace.

Figure 3: Normalized Average Cost of bipartite OMD vs 
naive, non-networked OMD and LFU and the optimal static 
policy, on a circular adversarial trace.

Testing in a bipartite network with three 
caches and two sources, with one cache 
connected to both sources and the other 
two connected only to one source, initial 
results are very promising. Bipartite OMD 
has a decreasing Normalized Average Cost, 
and outperforms naive, non-networked 
implementations. This implies sublinear 
regret on this trace, though no formal 
bounds have been proven. 
The algorithm shows promise, bringing the 
advantages of OMD to the bipartite setting.

Future work could include testing 
hierarchical topologies, as well as proving 
theoretical regret bounds for this algorithm. 
Allowing for the use of adoptive learning 
rates may also prove useful, as different 
parts of the network serve different users 
that may require different adaptability. 
Additionally, in order to improve perfor-
mance, the more efficient projection 
algorithm developed in [3] could be ex-
tended to the bipartite setting.
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Figure 1: A model of a bipartite caching network. 
A caching policy must decide which files to cache 
in the middle two caches in order to maximize the 

number of requests served by them

OMD is not integral by default, but the 
online coupled rounding scheme pro-
posed in [3] can create integral states 
preserving regret bounds.

Conclusion

Future Work

Caches can store data in a frac-
tional or in an integral manner.  
The former allows arbitrarily small 
chunks of files to be stored, the 
latter does not. In [1], the authors 
show that, in practice, most caching 
situations can be modeled in an 
integral manner.

??

mailto:q.oschatz@gmail.com
http://www.quentinoschatz.com

