EVALUATING THE ROBUSTNESS OF DQN AND AUTHOR **QR-DQN IN TRAFFIC SIMULATION:** ANALYZING THE EFFECT OF QUANTILE MANIPULATION AND ENVIRONMENTAL VARIABILITY EXAMINER

I. INTRODUCTION

- Recent advances in autonomous driving require reliable and 35 robust machine learning algorithms. • Deep Q-Network (DQN) [1] works well with discrete action 25 spaces, but suffers from overestimation bias and out-of-15 distribution performance. • Quantile Regression Deep Q-Network (QR-DQN) [2] improves on DQN by estimating quantiles of the value distribution for 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k better return prediction. Fig. 1: DQN training graph for 5 seeds • The effect of utilising QR-DQN's quantile range when predicting actions has not been sufficiently studied. 35 • Does utilizing only parts of QR-DQN's quantiles 15 determine the model to employ a **conservative approach** that **improves** its **performance**? 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k Fig. 2: QR-DQN training graph for 5 seeds • How does the **robustness** of **DQN** and **QR-DQN** compare when evaluated across progressively varying 30 traffic environments that differ from the training setting? 25 20 • Models: taken from Stable Baselines 3 library, having consistent hyperparameters and 5 seeds for each. • Proposed model: modifies standard QR-DQN by using only 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k Fig. 3: RA OR-DON 0.4 training graph for 5 seeds lower quantiles to guide conservative decision-making. Added 'quantile_fraction' parameter to control the quantile 30 range used when predicting actions (values 0.1 and 0.4); 25 Referred to as Risk-Averse QR-DQN (RA QR-DQN). 20 • Environment: HighwayEnv's highway scenario with 15 configurable lane count, traffic density, and vehicle behavior. 10 • Experiment: trained each model in the same fashion and tested them in five varied environments for 1000 epsiodes. 0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k Fig. 4: RA QR-DQN 0.1 training graph for 5 seeds

II. RESEARCH QUESTIONS

III. METHODOLOGY

- Metrics: average reward and collision rate.

REFERENCES

IV. MODEL TRAINING

[1] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, et al. Deep Reinforcement Learning for Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, June 2022. [2] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), March 2016. Number: 1.

SUPERVISORS

DQN (Fig. 1)

- slower learning
- lower final reward (avg. ~26.3)
- signs of instability in some seeds.

QR-DQN (Fig. 2)

- learned faster
- reached higher reward average (~30.1)
- shows more stable performance to DQN

RA QR-DQN 0.4 (Fig. 3)

- outperforms standard QR-DQN
- average reward (~31.0)
- even more stable in learning

RA QR-DQN 0.1 (Fig. 4)

- best performance
- average reward (~31.3)
- fewer quantile usage encouraged stable and more efficient learning

Dr. Annibale Panichella

V. RESULTS

Table 1: Mean return ± standard error, over 5 seeds in each test environment					
Model	3 lanes	4 lanes	6 lanes	aggressive	traffic
DQN	30.392 ± 1.010	29.959 ± 0.953	29.339 ± 0.850	29.050 ± 0.971	17.099 ± 0.603
QR-DQN	31.162 ± 0.616	32.637 ± 0.343	32.268 ± 0.392	28.320 ± 0.711	15.647 ± 0.971
RA QR-DQN 0.4	31.400 ± 0.259	31.664 ± 0.207	31.097 ± 0.435	29.606 ± 0.392	15.493 ± 0.791
RA QR-DQN 0.1	31.696 ± 0.165	32.370 ± 0.134	32.057 ± 0.114	28.819 ± 0.420	16.131 ± 0.297
Table 2: Mean collision rate (%) \pm standard error, over 5 seeds in each test environment					
Model	3 lanes	4 lanes	6 lanes	aggressive	traffic
DQN	20.36 ± 5.914	20.78 ± 5.351	20.8 ± 4.727	24.48 ± 5.272	86.8 ± 1.499
QR-DQN	15.42 ± 3.159	5.22 ± 1.501	5.6 ± 1.689	25.04 ± 3.222	86.8 ± 2.946
RA QR-DQN 0.4	5.72 ± 1.673	4.44 ± 1.902	6.62 ± 3.088	13.04 ± 2.199	94.58 ± 1.579
RA QR-DQN 0.1	8.68 ± 1.399	2.74 ± 0.603	2.6 ± 0.252	20.14 ± 2.379	83.88 ± 0.833

VI. CONCLUSION

Limitations and Future Work

Cristian Flaviu Toadere c.f.toadere@student.tudelft.nl Dr. Mustafa Celikok, Dr. Frans Oliehoek

• DQN presents its limitations, dropping in performance in different environments due to overestimation bias.

• **QR-DQN**'s **quantile** utlization showed **better adaptability** to new environments, achieving better results in most cases. • RA QR-DQN further reduces collision rates by using a risksensitive approach in quantile selection which employs a conservative behaviour, with minor reward trade-off.

• Results are limited to the highway scenario, they cannot be generalised for other scenarios.

• Model performance constrained by current configuration and training scope, with limited RA QR-DQN models considered. • Further study into dynamic quantile range selection for more adaptive, context-aware agents.

 Optimize HighwayEnv reward function for better balance between exploration and safety.