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Bayesian Deep Learning treats the parameters of the neural network as random variables. 

The predictions become a distribution which is intractable.

Counterfactual explanations can be applied to algorithmic recourse, which is concerned with 

helping individuals in the real world overturn undesirable algorithmic decisions

How do counterfactual explanations correlate with predictive uncertainty quantification?

Are models that provide uncertainty quantification more explainable?

How to make the different models comparable?
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Predictive uncertainty quantification measures the degree of certainty a model has in its 

predictions. We will measure it locally with Predictive entropy [1] and globally with Expected 

calibration error [2]
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How modalities of the data influence the plausibility of the counterfactual explanations?
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Dataset and the model produced the least implausible counterfactuals

Identify more suitable metric for evaluation of plausibility

7. Conclusions

Predictive uncertainty models are more capable to learn the 

visual data than the tabular data  

Predictive uncertainty by itself seems necessary but not 

sufficient to guarantee plausibility of the counterfactuals
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