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1
Introduction

Methodology
The leading question of the paper is: How 
effective is the CodeGemma-7B model in 
generating code-comments for 
programming in Dutch? 
To answer this question, we investigate the
following research questions:
 RQ1 What kind of errors does the model
          make?
 RQ2 How well does the generated output
          match the original according to 
          ROUGE [4] and BLEU [5] metrics?
 RQ3 What kind of inefficiencies exist in the 
          tokenizer used by the model?

Aim
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Introduction
Large Language Models (LLMs) are
becoming an increasingly effective tool 
for code completion [1,2]. However, 
questions arise regarding the
effectiveness beyond English, the
language most models are trained
on [1]. This paper investigates the
adaptability of LLMs when used 
outside of their intended use, 
particularly focussing on the model 
CodeGemma-7B [3] when prompted 
with Dutch context.

Data Preparation:
    - Collect source code dataset: The dataset used consists of open-source Java code containing one of the top 2500
       most common Dutch words found using the GitHub search API.
    - Mask out existing comments: Utilized regular expressions to locate and mask existing comments. 
       Retained the first two words for line comments and three words for block comments of the original comment to 
       ensure sufficient context for Dutch language prediction.
    - Add LLM delimiters for fill-in-the-middle (FIM): Added the prefix, middle, and suffix delimiters for the model.
    - Random selection: Ensured only one comment was included per repository to avoid skewed data.

Inference: 
    - Tokenize prompt: Tokenize the masked data.
    - Run the model: Ran inference on the tokenized data to generate new comments.
    - Run metrics: We used the ROUGE-L and BLEU-4 metrics to compare the original and generated comments.
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Qualitative results showed the model's promising 
performance in generating Dutch code comments, with 53% 
of non-excluded comments being accepted as displayed in 
Figure 1. The most common errors we found were related to 
educated guesses and late terminations. The full taxonomy 
of all labels we assigned is displayed in Table 1. Quantitative 
results showed that our results are very similar 26% of the 
time according to BLEU-4 and 28% according to ROUGE-L. 
The distribution of the scores is displayed in Figure 2 
and 3. Finally, training our own tokenizer showed a mean 
of 5.06% lower as displayed in Figure 4, with the 
compression factor being 5.35% better.
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Figure 2: Custom tokenizer vs Gemma

Table 1: Taxonomy of failure categories

This study examined the potential and 
challenges of using the CodeGemma-7B 
model for generating comments, showing its 
promise in natural language and code gen-
eration. However, issues such as producing 
incorrect statements and late terminations
indicate the need for improvements. These 
issues can be improved through better 
training processes, bias mitigation, and 
standardized benchmarks Additionally, our 
custom tokenizer outperformed the Gemma 
tokenizer, showing the importance of 
efficient tokenization in non-English 
languages.

Figure 1:: Distribution of evaluated comments

Figure 3: Distribution of ROUGE-L scores

Figure 2: Distribution of BLEU-4 scores

Figure 4: Custom-trained tokenizer vs Gemma tokenizer
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