
Evaluating CodeGemma-7B for
Dutch Code Comment Generation

Author Supervisors
Maliheh Izadi
Responsible Professor
m.izadi@tudelft.nl

Sander Vermeulen
s.r.vermeulen@student.tudelft.nl

Arie van Deursen
Responsible Professor
arie.vandeursen@tudelft.nl

Jonathan Katzy
Supervisor
j.b.katzy@tudelft.nl

1
Introduction

Methodology
The leading question of the paper is: How
effective is the CodeGemma-7B model in
generating code-comments for
programming in Dutch?
To answer this question, we investigate the
following research questions:
 RQ1 What kind of errors does the model
 make?
 RQ2 How well does the generated output
 match the original according to
 ROUGE [4] and BLEU [5] metrics?
 RQ3 What kind of inefficiencies exist in the
 tokenizer used by the model?

Aim
1
Introduction
Large Language Models (LLMs) are
becoming an increasingly effective tool
for code completion [1,2]. However,
questions arise regarding the
effectiveness beyond English, the
language most models are trained
on [1]. This paper investigates the
adaptability of LLMs when used
outside of their intended use,
particularly focussing on the model
CodeGemma-7B [3] when prompted
with Dutch context.

Data Preparation:
 - Collect source code dataset: The dataset used consists of open-source Java code containing one of the top 2500
 most common Dutch words found using the GitHub search API.
 - Mask out existing comments: Utilized regular expressions to locate and mask existing comments.
 Retained the first two words for line comments and three words for block comments of the original comment to
 ensure sufficient context for Dutch language prediction.
 - Add LLM delimiters for fill-in-the-middle (FIM): Added the prefix, middle, and suffix delimiters for the model.
 - Random selection: Ensured only one comment was included per repository to avoid skewed data.

Inference:
 - Tokenize prompt: Tokenize the masked data.
 - Run the model: Ran inference on the tokenized data to generate new comments.
 - Run metrics: We used the ROUGE-L and BLEU-4 metrics to compare the original and generated comments.

2 3

Qualitative results showed the model's promising
performance in generating Dutch code comments, with 53%
of non-excluded comments being accepted as displayed in
Figure 1. The most common errors we found were related to
educated guesses and late terminations. The full taxonomy
of all labels we assigned is displayed in Table 1. Quantitative
results showed that our results are very similar 26% of the
time according to BLEU-4 and 28% according to ROUGE-L.
The distribution of the scores is displayed in Figure 2
and 3. Finally, training our own tokenizer showed a mean
of 5.06% lower as displayed in Figure 4, with the
compression factor being 5.35% better.

4
Results

5
Conclusion

Figure 2: Custom tokenizer vs Gemma

Table 1: Taxonomy of failure categories

This study examined the potential and
challenges of using the CodeGemma-7B
model for generating comments, showing its
promise in natural language and code gen-
eration. However, issues such as producing
incorrect statements and late terminations
indicate the need for improvements. These
issues can be improved through better
training processes, bias mitigation, and
standardized benchmarks Additionally, our
custom tokenizer outperformed the Gemma
tokenizer, showing the importance of
efficient tokenization in non-English
languages.

Figure 1:: Distribution of evaluated comments

Figure 3: Distribution of ROUGE-L scores

Figure 2: Distribution of BLEU-4 scores

Figure 4: Custom-trained tokenizer vs Gemma tokenizer

References
[1] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: multi-token code
completion by jointly learning from structure and naming sequences,”
in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 401–412. Available: https://doi.org/
10.1145/3510003.3510172

[2] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S. Zhong, B. Yin,
and X. Hu, “Harnessing the power of llms in practice: A survey on
chatgpt and beyond,” ACM Trans. Knowl. Discov. Data, vol. 18, no. 6,
apr 2024. Available: https://doi.org/10.1145/3649506

[3] CodeGemma Team, A. J. Hartman, A. Hu, C. A. Choquette-Choo,
H. Zhao, J. Fine, J. Hui, J. Shen, J. Kelley, J. Howland, K. Bansal, L. Vilnis,
M. Wirth, N. Nguyen, P. Michel, P. Choy, P. Joshi, R. Kumar, S. Hashmi,
S. Agrawal, S. Zuo, T. Warkentin, and Z. e. a. Gong, “Codegemma:
Open code models based on gemma,” 2024. Available:
https://goo.gle/codegemma

[4] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
P. Isabelle, E. Charniak, and D. Lin, Eds. Philadelphia, Pennsylvania,
USA: Association for Computational Linguistics, Jul. 2002, pp. 311–318.
Available: https://aclanthology.org/P02-1040

[5] C.-Y. Lin, “ROUGE: A package for automatic evaluation of
summaries,” in Text Summarization Branches Out. Barcelona, Spain:
Association for Computational Linguistics, Jul. 2004, pp. 74–81.
Available: https://aclanthology.org/W04-1013

