

Figure 1: A 3D rendered image of the Midge [2]

1. Background

- Studying human behavior is complex
- Behavior changes when observed [3]
- Collecting data is difficult
- Mobile sensors may provide a solution

2. Definitions

- The Midge (cf. Figure 1)
 - Mobile device
 - Contains a DMP
 - Developed by Socially Perceptive Computing Lab at Delft University of Technology
 - Used to study human interaction in a natural social context (like a congress)
- Internal Measurement Unit (IMU)
 - Measures acceleration, rotation and gravitational forces
- Digital motion processor (DMP)
 - Combines data from sensors in the IMU (Like the rotation vector)
- Rotation Vector
- Describes rotation direction & speed
- Rotation definitions
 - Euler angles
 - 3 dimensional, prone to gimbal lock (cf. Figure 2)
 - Quaternions
 - 4 dimensional, difficult to visualize

3. Research Question

How does the Midge compare to a modern mobile phone regarding the accuracy and reliability of the rotation vector from the DMP in the Midge?

Categorizing the performance of the rotation vector produced by the Digital Motion Processor of the midge.

Author: Bent Engbers (B.J.Engbers@student.tudelft.nl) Supervisor: Stephanie Tan, Responsible professor: Hayley Hung

4. Method

- Create a precise controllable rotating platform
- Connect phone and sensor to platform
- Experiment with slow constant rotation single direction

5. Results

- Experiment parameters:
- Constant speed
- Almost instant start and stop
- 1200 steps at 0.9° per step (3 full rotations)
- Step speed 75 Hz (16 seconds for 3 full rotations)

6. Conclusions

Visual analysis:

- Phone data shows expected results:
 - Large change in one axis (Z2)
 - Small changes in remaining axis (X2,Y2)
 - Constant speed rotation (Z2)
- The Midges are consistent on Z & Z2
 - When compared to the mobile phone
 - When compared to each other
- Main axis of rotation
- More noise in X,X2,Y & Y2
- When compared to the mobile phone
- When compared to each other
- Small changes (<10°)
- Not main axis of rotation, • difficult to control
- Midges maybe be less accurate in detecting smaller (<10°) changes

7. Limitations

- Single axis of rotation tested
- Single speed tested
- Single direction tested
- One other DMP tested

8. References

[1]. J. Zeitlhöfler, "Nominal and observation-based attitude realization for precise orbit determination of the jason satellites," Ph.D. dissertation, Jun. 2019, p. 16. [Online]. Available: https://mediatum.ub.tum.de/doc/1535899/file.pdf [2]. <u>https://github.com/TUDelft-SPC-Lab/midge-code</u> [3]. J.-M. Hoc, "Towards ecological validity of research in cognitive ergonomics," Theoretical Issues in Ergonomics Science, vol. 2, no. 3, pp. 278–288, 2001. doi: 10.1080/14639220110104970. eprint: https://doi.org/10.1080/14639220110104970. [Online]. Available: https://doi.org/10.1080/14639220110104970