
Algebraic Effects and Handlers for
Software Transactional Memory

1. >Introduction
 Algebraic effects and handlers [1] is a technique for modular
effectful programming where side effects are modelled by
separating their set of algebraic operations - syntax, and their
implementation - handlers.

 However, many mainstream functional programming languages,
like Haskell, lack built-in frameworks to specify and implement
effects, such as Software Transactional Memory (STM) [2], in this
manner.

2. >Research Questions
How can we implement and reason about an algebraic effect model
of STM in Haskell?

How can an implementation of algebraic effects that implements
the intended behavior of STM look like in correspondence with
the literature?

What are the mathematical laws describing the intended
behavior of STM and prove the proposed implementation is
correct with respect to them?

How do the operations of our STM interface interact with the
operations of other effects, and what the "extension" of
transactional memory to other effects looks like?

3. >Methodology
Algebraic Effects and Handlers

Modelled as free monads [3]
Effect syntax described by signature functors
Composition of multiple effects using co-products (+) and
subtyping (<)
Handlers are implemented by recursively folding over the free
monad structure

Software Transactional Memory

STM is a concurrency abstraction for lock-free communication
between threads using database-like atomic transactions.
The transactions modify transactional variables shared
between threads and commit to the global memory - optimistic
execution
Allows retrying, choice with orElse and concurrent execution
with atomically

5. >Proof of Correctness

References
[1] Gordon Plotkin and John Power. Algebraic Operations and Generic Effects. Applied
Categorical Structures, 11(1):69–94, 2003
[2] Simon Peyton Jones. Beautiful Concurrency. O’Reilly, Beautiful Code Edition, 01
200
[3] Casper Bach Poulsen. Algebras of Higher-Order Effects in Haskell, 08 2023. URL:
http://casperbp.net/posts/2023-08-algebras-of-higher-order-effects/.
[4] Johannes Borgström, Karthikeyan Bhargavan, and Andrew D. Gordon. A compositional
theory for STM Haskell. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell,
Haskell ’09, pages 69–80, New York, NY, USA, 2009. Association for Computing
Machinery
[5] Casper Bach Poulsen and Cas van der Rest. Hefty algebras: Modular elaboration
of higher-order algebraic effects. Proc. ACM Program. Lang., 7(POPL), jan 2023
[6] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect Handlers in Scope. In
Proceedings of the 2014 Haskell Symposium, Haskell ’14, New York, NY, USA, 2014. ACM

Matej Tomášek
m.tomasek@student.tudelft.nl

Supervisor: Jaro Reinders
Responsible Professor: Casper Bach Poulsen

Sequential model (Free monad)
The handled result is either accumulated heap modifications
or failed computation on retry
Offers transactional semantics from effect interaction

To ensure correctness, the proposed implementation was verified on a set of
equivalences for STM abstractions [4]

4. >Implementation

Concurrent model (Hefty trees [5])
Using modified implementation of higher-order (scoped) multi-
threading effect from [6], providing operations atomic, fork
and wait
Devised two evaluation options: round-robin (real) scheduling
with execute, and modelling all possible interleavings with
non-determinism in executeAll
atomically embeds the handler hSTM to evaluate the
transaction and its changes are either committed to the
shared memory in State Heap, or it recursively call itself
with the same transaction for re-execution at a later time

6. >Applications
The implementation was used to recreate the Dining Philosophers problem solution
in Haskell, which uses native STM transactions - with the round-robin scheduler
evaluation, we were able to achieve the same functionality.

> Running the philosophers. Press Ctrl-C to quit.
> Aristotle is hungry.
> Kant is hungry.
> Spinoza is hungry.
> Aristotle got forks 1 and 2 and is now eating.
> Marx is hungry.
> Russel is hungry.
> Spinoza got forks 3 and 4 and is now eating.
...

The extension of atomically was provided for other effects, under the assumption
that they interact with their version of transactional memory.
Delegation of retry and orElse operations to the Transactional effect

(1)

(2)

(3)

(4)

(5)

(6)

7. >Conclusions and Limitations
Despite implementing correct semantics, coupling of syntax and handlers reduces
modularity [5][6]
Our concurrency model heavily relies on global state semantics, as local scopes in
forked threads were inaccessible from the main thread
For future work, improving the concurrency model’s robustness to handle non-
terminating transactions, e.g. consisting of only a single retry operation, and
extending the formal reasoning to atomically

Figure 1: Limited withdrawal example from [2]

Figure 2: STM interface

Figure 3: Operations of the concurrency model

Figure 4: The mathematical laws used to verify our implementation

Figure 6: atomically’ signature

Figure 5: Output of the recreated solution in our framework

