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4. Results and Discussion

5. Conclusions

3. Methodology

Models under comparison: NP, NP+SN, NP+AB, NP+SN+AB.

update by backpropagation

data batch

+ all models are trained and evaluated on the same data

+ each model is trained 5 times

« after every 5 epochs, evaluate NLL loss on test set of same distribution
- two training data-sets: different noise levels (50%: 0.0 noise, 25%: 0.1

samples

+ ScreenerNet achieves more stable loss evolution and slightly
better accuracy for seen task types, but lower accuracy for
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ScreenerNet and the trade-off between prediction
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different task types than those seen during training.

+ Active Bias outperforms the baseline in some generalization
tasks, but the results are mixed. When trained on noisy data,
training efficiency is affected.

accuracy and training efficiency;

« Analyzing Active Bias' delayed convergence under
noisy datasets;

* Investigating different ways of combining
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+ Combining ScreenerNet and Active Bias slightly increases
ScreenerNet's generalization performance and stabilizes
Active Bias' training evolution under noisy conditions.
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