
1. Background 3. Inductive data types 5. Discussion and advice

2. Method 4. Pattern matching
6. Future work

Inductive data types and pattern matching - Literature survey of implementation
techniques of type systems

Pau Faraldos Pijoan
P.FaraldosPijoan@student.tudelft.nl

Responsible Professor
Jesper Cockx

Supervisor
Bohdan Liesnikov

Type systems are essential as they:
Help discover errors at compile time
Simplify refactoring
Make code self-documenting

Dimensions of analyzing resources:
Code Generation Strategy

Decision trees
Backtracking finite state automata
Term Decomposition
Other compiler-specific approaches

Type system / Programming language Features
Type safety (statically & strongly typed vs. dynamically
& weakly typed)
Complex types (e.g. inductive data types, coinductive
data types, mutually inductive data types)
Evaluation techniques (lazy vs. eager)
...

Inductive data types
Data type defined in terms
of itself, allowing recursive
structures.
In specific cases some
memory indirection can be
eliminated. Tag 0, null pointer Tag 1 Pointer to tuple (a, (List a))

Coinductive data types
Add support to non-terminating, infinite data structures.

Mutually inductive data types
Circular dependencies
between data types.
Important consideration:
Forward declarations and
dependency analysis

Decision trees
Each decision is a test
of a pattern matching
condition.
Correct order is
essential to
performance -> NP-
Hard problem.

Backtracking finite state automata
Each state is a test of a
pattern matching condition.
More flexible and complex
patterns (e.g. guards, or-
patterns)

Example: (Cons 1 tail)

Term decomposition
Recursively decomposes terms to avoid unnecessary evaluation.
Useful with lazy evaluation.

7. References

Implementing pattern matching in compilers can be complex:
Advanced patterns
Optimizations
Effects on type checking & inference 
Exhaustiveness and redundancy checking

Research Question: What are the different
implementation techniques for type systems regarding
inductive data types and pattern matching that have
been proposed in the literature?

Not a lot of relevant literature comparing different techniques
of implementing pattern matching and inductive data types.

Compare the resources based on where they fit into these
dimensions, find concise and clear way of showing results.

Understanding the context and usage of language is essential.

Which features should the language have?
More features are not always better: can over-complicate
the code, lead to performance issues, can become
confusing to users...

Applying memory indirection optimizations to the
representation of inductive data types can make code more
complex, but improves run-time performance.

Decision trees can be more efficient at run-time when the
order of tests is carefully optimized, but extensions of simple
patterns can be more complicated to integrate compared to 
 in FSAs.

Term decomposition can be integrated into pattern matching
techniques when lazy evaluation is used to avoid unnecessary
computation.

Deep-dive into commonly-used programming languages and
analyze the techniques used.
Combination of multiple techniques for better performance.
Extensions for more complex data types (e.g. dependent
types, polymorphic types).

[1] Marianne Baudinet and David MacQueen. Tree pattern matching in ML, 1985

[2] Luca Cardelli. Compiling a functional language. In Proceedings of the 1984 ACM Symposium on
LISP and Functional Programming, LFP ’84, page 208–217, New York, NY, USA, 1984. Association
for Computing Machinery

[3] Jean-Baptiste Jeannin, Dexter Kozen, Alexandra Silva, David Baelde, Arnaud Carayol, Ralph
Matthes, and Igor Walukiewicz. Cocaml: Functional programming with regular coinductive types.
Fundam. Inf., 150(3–4):347–377, jan 2017

[4] Laurence Puel and Ascander Suarez. Compiling pattern matching by term decomposition.
Journal of Symbolic Computation, 15(1):1–26, 1993

[2]

[3]

[1]

[4]


