Inductive data types and pattern matching - Literature survey of implementation
techniques of type systems

Responsible Professor

Pau Faraldos Pijoan
P.FaraldosPijoan@student.tudelft.nl

1. Background

« Type systems are essential as they:
o Help discover errors at compile time
o Simplify refactoring
o Make code self-documenting

« Implementing pattern matching in compilers can be complex:
o Advanced patterns
o Optimizations
o Effects ontype checking & inference
o Exhaustiveness and redundancy checking

= Notalot of relevant literature comparing different techniques
f pattern matching and i types.

Research Question: What are the different
implementation techniques for type systems regarding
inductive data types and pattern matching that have
been proposed in the literature?

« Dimensions of analyzing resources:
© Code Generation Strategy
* Decision trees
= Backtracking finite state automata
= Term Decomposition
* Other compiler-specific approaches
o Type system / Programming language Features
= Type safety (statically & strongly typed vs. dynamically
& weakly typed)
= Complex types (e.g. inductive data types, coinductive
data types, mutually inductive data types)
= Evaluation techniques (lazy vs. eager)

Compare the resources based on where they fit into these
dimensions, find concise and clear way of showing results.

Jesper Cockx

3. Inductive data types

Inductive data types

« Datatype defined in terms
of itself, allowing recursive
structures

In specific cases some

memory indirection can be
Te50,nll poiner To§1 Polnter o tple o (st

Coinductive data types
+ Add support to non-terminating, infinite data structures.

Mutually inductive data types

4. Pattern matching

Decision trees
« Each decision s a test
of a pattern matching - =
condition
« Correctorderis
essential to .
performance -> NP-
Hard problem,

Example: Cons1 tail)

+ Circular dependencies
between data types.

« Important consideration:
Forward declarations and
dependency analysis®

Backtracking finite state automata

« Eachstateisatestofa
pattern matching condition.

« More flexible and complex
patterns (e.g. guards, or-
patterns)

Term decomposition
. ively terms to avoid
+ Useful with lazy evaluation.

Supervisor
Bohdan Liesnikov

5. Discussion and advice

« Understanding the context and usage of language is essential.
« Which features should the language have?

o More features are not always better: can over-complicate
the code, lead to performance issues, can become
confusing to users.

« Applying memory indirection optimizations to the

complex, butimproves run-time performance.

be i the
order of tests is carefully optimized, but extensions of simple
i to
P

in FsAs.

« Term decomposition can be integrated into pattern matching
i ion s used to avoid

computation.

6. Future work

Deep-dive into commonly-used programming languages and
analyze the techniques use

‘Combination of multiple techniques for better performance.
Extensions for more complex data types (e.g, dependent
types, polymorphic types)

7. References

2 tuca Cardol

L£P754,page 208-21, New Yo
forComputing Machinery

3 ean
Funca i, 5084134737, i 2017

Jourmatof ymbol Computation 1503 26,1055

