Finding Train Type Patterns in the Train Unit Shunting Problem

Mitchell van Pelt

m.vanpelt-1@student.tudelft.nl

Introduction

- The Train Unit Shunting Problem (TUSP) outlines the challenge of parking, maneuvering and **recombining** train units in a shunting yard.
- TUSP **planning** is done **manually.** Algorithms exist, but are **slow** or the solutions are incomplete [1], [2].
- Researchers suggest that incorporating patterns present in good TUSP solutions can help improve algorithm performance [2], [3].
- Train type is a prominent characteristic and patterns in this could be very useful.
- Research question: What patterns of train type can be found **in realised solutions** of the Train Unit Shunting Problem?
- Parking **track** and parking **time** are important subtasks in the TUSP.
- Train **subtype**: main type + number of carriages.

Method

Finding patterns

- **Track:** use statistical testing to find biases between types and parking tracks.
- Time: use kernel density estimation to find differences in total time a unit is parked.

Compare with subtype

Repeat experiments **for train subtypes** to determine **differences** in patterns. between type (e.g. VIRM) and subtypes (e.g. VIRM-IV).

Results

Parking Track

- **Strong biases** between many tracks and types.
- In most shunting yards the **majority** of the parking tracks is biased.
- Parking tracks can have biases for multiple train types.
- Train types can have biases for multiple parking tracks.
- Amersfoort shunting yard has a **geographical split** in tracks biases for **Intercity** train types and **Sprinter** train types.
- Table 1 shows some of the biases for Amersfoort.

Туре	361AV	381R	383L
DDZ	2.47	0.38	0.47
ICMm	1.19	0.26	0.24
SLT	0.61	0.66	2.46
SNG	0.73	1.82	1.23
VIRM	2.24	0.40	0.11

Table 1: Biases between train types and parking tracks for Amersfoort shunting yard. The further the score from 1, the greater the bias.

0.00

0.15

0

Discussion

- The found patterns are only characteristic for manual/realised sol
- Patterns are likely strategies used by human planners.
- The results are only valid for some shunting yards in the Netherlan could be different in other countries.

References

- [1] R. van den Broek et al., "A local search algorithm for train unit shunting with service scheduling," Transportation Science, vol. 56, pp. 1–264, 11 2021.
- [2] I. K. Hanou et al., "Increasing the capacity of shunting yards within the current infrastructure: A computational perspective," 2023.
- [3] L. van de Gevel, "How human knowledge can support algorithmic decision-making in the train unit shunting problem an exemplary study," 2022.

Supervisor: Professor:

ir. Issa Hanou Prof. dr. Mathijs de Weerdt

Parking Time

Parking time is very similar between train types.

Most train units stay for **around five hours** in a shunting yard. This is the same for all train types.

There are some **notable differences** in probability for longer parking times.

- Figure 1 shows ICMm being twice as likely to be parked for 12 to 17 hours.

Figure 1: Class conditional probability density functions for parking time for type ICMm and all other train types in Utrecht shunting yard.

Subtype comparison

- Looking at **subtype** makes the **differences more** specific.
- Some parking **tracks** that are biased for a main train type are a lot **more biased** for **one** of the **subtypes**.
- Some sets of parking tracks are **equally biased** for a main train type, but each is biased more for one subtype.
- Table 2 shows **two tracks** being **biased** almost equally for type SNG. However, 379L is more biased for the SNG-III subtype and 381R is more biased for the **SNG-IV** subtype.
- **Parking times** for **subtypes** are again very **similar**.
- Notable differences in parking time are more prevalent for subtypes.

Туре	379L	381R
SNG	1.85	1.82
SNG-III	1.60	1.96
SNG-IV	2.15	1.66

Table 2: Biases between train subtype and parking track in Amersfoort Shunting yard.

	Conclusions
utions.	- Pattern between train type and parking track in all investigated shunting yards.
	- No clear pattern between train type and parking time.
ds. Patterns	 The pattern in track is more specific for train subtype, but still no pattern in parking time.

ProRail \longleftrightarrow **T**UDelft