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Methodology 1 Introduction

With a total energy consumption of 118 TWh, households in

B the Netherlands accounted for 23% of total national energy
—} —} —} consumption in 2021 [1]. Being able to accurately forecast
-1 both the location and the time of 23% of the total national

energy demand is an important part in managing and
reducing the strain on an already congested electricity grid.
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Figure 1: Forecast Aggregation Across Spatial Levels
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Figure 3: Evaluation of CNN-LSTM model without hyperparameters, trained for 100 epochs
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