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Tensorflow 2 compatibility: ensures 
compatibility across systems and allow for 
frameworks like Keras. 

Re-weighting iterations: improve overall 
performance and reduce training time. 

• Observation: Joint Phase takes the longest 
compared to the other phases. (Figure 5) 

• Hypothesis: By focussing more on the 
components that TimeGAN added we can 
compensate for training the last phase less. 

• Evaluation: Distributing the iterations over the 
phases of training. (Table 2) 

• Results: Configurations C6 to C8 produce 
constant and better results than the 
benchmark and reduce overall training time by 
9% up to 29%. (Figure 4) 

• Validation: Validated finding on sine data set 
and found similar results.  

Conclusion: Based on computational 
resources, choose a ratio between 2 : 2 : 1 and 
1,4 : 1,4 : 1 to produce equal or better results 
compared to original 1 : 1 : 1 ratio and reduce 
training time significantly. 

Discriminative score: Measurement of 
similarity between original and synthetic data. 

Predictive score: Measurement to evaluate 
how well the model learned temporal dynamics 
of data. 

Three data sets: sine, stock and energy. 

The original implementation of TimeGAN [4] did 
not produce good results and no learning curve. 

Alternative implementation of YData [3] started 
overfitting after 25000/30000 iterations. 

Original TimeGAN implementation did not take 
the input time information into account. 

After investigation, due to insufficient code 
review when upgrading to Tensorflow 2. 

After fixing the implementation we achieved 
good results for sine and stock data set.  

For the energy we were unable to find correct 
hyper paramaters.
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Generative Adversarial Networks [1] for time-
series data synthesis. 

Research goals:  

• Reproducing results for TimeGAN [2]. 

• Propose improvements for reducing training 
time and compatibility. 

Generative Adversarial Networks; GANs 

• Generator: Generates synthetic data 

• Discriminator: Distinguish between real and 
fake data from generator. 

Generator and discriminator learn by competing 
against each other; adversarial loss. 

TimeGAN adds two additional losses: 

• Reconstruction loss: embedding & recovery 
function map to and from latent space. 

• Supervised loss: forces generator to learn 
temporal dynamics of data. 

Adding losses and components adds 
computational overhead; longer training time. 
Three training phases. (Figure 3)

TimeGAN effectively learns the temporal 
dynamics of time-series data and is able to 
generate realistic looking synthetic data. 

To ensure reproducibility providing the original 
implementation and hyper parameters is crucial. 

We propose two novel improvements to 
TimeGAN: compatibility with Tensorflow 2 and 
distributing the iterations over the training 
phases.  

By re-weighting the iterations we improve the 
overall performances of TimeGAN and reduce 
training time. 

Further research could be conducted on the 
impact of the different components of TimeGAN 
and making TimeGAN differentially private.
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Figure 2: Overfitting in PCA plots every 5000 iterations 

Table 1: Results of reproducing TimeGAN

Table 2: Configurations for distributing iterations

Figure 3: Three phases of TimeGAN training

Figure 4: Results for configurations from Table 2

Figure 5: Training times of phases of TimeGAN


