
RESEARCH POSTER PRESENTATION TEMPLATE © 2019

www.PosterPresentations.com

Tensorflow 2 compatibility: ensures
compatibility across systems and allow for
frameworks like Keras.

Re-weighting iterations: improve overall
performance and reduce training time.

• Observation: Joint Phase takes the longest
compared to the other phases. (Figure 5)

• Hypothesis: By focussing more on the
components that TimeGAN added we can
compensate for training the last phase less.

• Evaluation: Distributing the iterations over the
phases of training. (Table 2)

• Results: Configurations C6 to C8 produce
constant and better results than the
benchmark and reduce overall training time by
9% up to 29%. (Figure 4)

• Validation: Validated finding on sine data set
and found similar results.

Conclusion: Based on computational
resources, choose a ratio between 2 : 2 : 1 and
1,4 : 1,4 : 1 to produce equal or better results
compared to original 1 : 1 : 1 ratio and reduce
training time significantly.

Discriminative score: Measurement of
similarity between original and synthetic data.

Predictive score: Measurement to evaluate
how well the model learned temporal dynamics
of data.

Three data sets: sine, stock and energy.

The original implementation of TimeGAN [4] did
not produce good results and no learning curve.

Alternative implementation of YData [3] started
overfitting after 25000/30000 iterations.

Original TimeGAN implementation did not take
the input time information into account.

After investigation, due to insufficient code
review when upgrading to Tensorflow 2.

After fixing the implementation we achieved
good results for sine and stock data set.

For the energy we were unable to find correct
hyper paramaters.

TU Delft, Computer Science & Engineering

Jan Mark Dannenberg under supervision of Lydia Y. Chen, Aditya Kunar and Zilong Zhao

Time Series Synthesis using Generative Adversarial Networks

INTRODUCTION

TIMEGAN

REPRODUCING RESULTS PROPOSED IMPROVEMENTS

CONCLUSION

REFERENCES

CONTACT

Generative Adversarial Networks [1] for time-
series data synthesis.

Research goals:

• Reproducing results for TimeGAN [2].

• Propose improvements for reducing training
time and compatibility.

Generative Adversarial Networks; GANs

• Generator: Generates synthetic data

• Discriminator: Distinguish between real and
fake data from generator.

Generator and discriminator learn by competing
against each other; adversarial loss.

TimeGAN adds two additional losses:

• Reconstruction loss: embedding & recovery
function map to and from latent space.

• Supervised loss: forces generator to learn
temporal dynamics of data.

Adding losses and components adds
computational overhead; longer training time.
Three training phases. (Figure 3)

TimeGAN effectively learns the temporal
dynamics of time-series data and is able to
generate realistic looking synthetic data.

To ensure reproducibility providing the original
implementation and hyper parameters is crucial.

We propose two novel improvements to
TimeGAN: compatibility with Tensorflow 2 and
distributing the iterations over the training
phases.

By re-weighting the iterations we improve the
overall performances of TimeGAN and reduce
training time.

Further research could be conducted on the
impact of the different components of TimeGAN
and making TimeGAN differentially private.

[1] Mehdi Mirza Bing Xu David Warde-Farley Sherjil
Ozair, Aaron Courville, Ian J. Goodfellow, Jean Pouget-
Abadie and Yoshua Bengio. Generative Adversarial
Networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems -
Volume 2, 2014

[2] Daniel Jarrett Jinsung Yoon and M. V. D. Schaar. Time-
series generative adversarial networks. NeurIPS, 2019.

[3] YData AI. YData - YData-synthetic GitHub.

[4] Jinsung Yoon. TimeGAN implementation on GitHub.

{j.m.dannenberg, a.kunar}@student.tudelft.nl,
{y.chen-10, z.zhao-8}@tudelft.nlFigure 1: Block diagram of TimeGAN training

Figure 2: Overfitting in PCA plots every 5000 iterations

Table 1: Results of reproducing TimeGAN

Table 2: Configurations for distributing iterations

Figure 3: Three phases of TimeGAN training

Figure 4: Results for configurations from Table 2

Figure 5: Training times of phases of TimeGAN

