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e This model is then trained
on a small, labeled dataset

to classify images as
BACKGROUND . "Healthy" or "Osteoarthritis".

e Baseline for Comparison:
We compare its
performance against a
control model, the same
architecture trained from
scratch with random

o Osteoarthritis is a progressive
disease diagnosed via X-rays.

e Manual diagnosis is time-
consuming and subjective,
especially in early stages.

o Automated methods could improve
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e Can GANs be used » Discriminator learns useful features but i =
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Can GAN-based pretraining improve

Discriminator, is trained on thousands of

KEY TAKEAWAYS

osteoarthritis clas.,sification.from X unlabeled X-rays. » Modest improvement suggests limited g GAN_'ba?'ed PIt==
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» Test C?AN_dISCHmmator e The Discriminator's job: Learn to distinguish real e Standardized X-rays may limit GAN learning . ;latsé'ﬂ.catlon' Modest
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« Compare to standard supervised learns the defining features of a real X-ray. o Future work: Larger datasets, varied notjus’lgfy the
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o Explore fine-tuning strategies. .
and complexity




