Researcher: Supervisors:

Andor Michels Jesse Mulderij Mathijs de Weerdt 25-06-2020

Multi-agent pathfinding with waypoints using

Branch-Price-and-Cut

MAPFW

In Multi-Agent Pathfinding (MAPF), agents have to move to a location without bumping into each other.

In Multi-Agent Pathfinding with Waypoints (MAPFW), they also have to pass waypoints on their way there.

MAPFW is important for:

- Warehouse navigation;
- Airport traffic;
- Train scheduling.

Finding the shortest paths through waypoints is similar to solving the Traveling Salesman Problem (TSP).

Branch-Price-and-Cut 2

- Branch-Price-and-Cut (BPC) is a technique for solving Integer Linear Programming (ILP) problems.
- A reduction from MAPF to ILP has been found (BCP), of which the implementation is the current state of the art for solving MAPF problems.
- BPC consists of 3 main parts:
 - **The Master problem**: Solves the current linear minimization problem with a subset of all the variables.
 - **The Pricer**: Generates new variables (in this case, paths) for the master problem to use.
 - The Separators: Add constraints to the master problem that are violated by the current solution.

Algorithms

Analysis shows that it is more viable to solve TSP in the pricer, rather than in the master problem or in the separators.

Developed algorithms:

• BCP-A*:

3

Runs A* using a heuristic that steers towards the unvisited waypoints.

• BCP-TSP:

Uses a modified TSP solving algorithm to find the optimal order of waypoints and runs A* with ordered waypoints.

BCP-A* has:

BCP-TSP has:

Results

Both algorithms have their strengths and weaknesses.

• High waypoint scalability Low mapsize scalability

 Low waypoint scalability • High mapsize scalability

Varying #Agents

random16x16

Varying #Waypoints