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Detection by 11% on InterWild model trained on RGB, when tested on IR dataset
VIadimir Sachkov
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Training Metrics and Coral Body Feature
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- Fine-tune InterWild on target domain only using alignment loss,

in advance projecting batches on subspace formed by top-K - Modular training of the model (separately hand_roi_net and

body backbone) allowed for a hyperparameter tuning on a batch size of 64.
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