

Problem & Motivation

Problem: RGB-trained models fail on IR due to domain shift (thermal vs. visual features). **Medical Need**: Early leprosy detection requires precise temperature measurement at hand joints. **Challenge:** Limited labeled IR data (only 80 labeled images and \approx 4500 unlabeled).

Data

1 FPS sampled from IR videos ≈ **5000** frames BBoxes annotated with Grounding DINO

80/80 RGB/IR images, manually collected + keypoints annotated

Source domain (RGB datasets)

InterHand26M ≈ **2.6** * **10^6** images

COCO-Wholebody ≈ **1.3** * **10^5** images

Domain Adaptation for Enhancing Visual Hand Landmark Prediction AI in Infrared Imaging

Unsupervised domain adaptation with AdaBN, Deep CORAL, and SSA Improves Keypoint Detection by 11% on InterWild model trained on RGB, when tested on IR dataset Vladimir Sachkov (v.sachkov@student.tudelft.nl)

Methodology

AdaBN

- Main idea: Batch normalization statistics (running mean and variance) carry information about the domain distribution.

- Implementation:
- Set batch size - Set momentum for BN layers
- Perform inference on all target domain, while keeping BN layers in train mode.

DeepCORAL

- Main idea: Introduce CORAL loss to a new regularized loss criteria for training on both source (RGB) and target (IR) datasets to maximize feature alignment

$$\mathcal{L}_{body} = \mathcal{L}_{bbox} + \lambda \ell_{CORA}^{body}$$

 $\mathcal{L}_{hand} = \mathcal{L}_{kp} + \lambda \ell_{CORAL}^{hand}$

λ - CORAL weight

SSA (Test-time Adaptation for Regression by Subspace Alignment)

- Main idea: Features of regression models have low subspace dimensionality -> naive feature alignment is unstable due to many dimensions having zero variance
- Implementation:
 - Calculate means and covariance matrices on source domain (COCO + InterHand)
 - Fine-tune InterWild on target domain only using alignment loss, in advance projecting batches on subspace formed by top-K eigenvectors of source domain

Evaluation framework

A Python library was designed to assess model performance using:

- **IoU** (intersection over union) Measures bounding box localization accuracy via overlap ratio.
- **PCK** (Percentage of correct keypoints)
- PCK@0.05 Evaluates keypoint correctness with a threshold of 5% of image size.
- **APCK** Adaptive threshold based on ground truth keypoint spacing for anatomical precision.

The framework combines quantitative metrics with visualizations (box/keypoint overlays) to validate model robustness across scales and anatomical variations.

Experiments

AdaBN

- Hyperparameter search performed over batch size, BN layer momentum, inclusion of frames sampled from videos
- **Observations:** - Inclusion of data, apart from data model is tested on only decreased performance
- Moderate +2-4% PCK improvement
- Highly sensitive to batch size and momentum

DeepCORAL

(b) After AdaBN application

- Focused on Hand roi net training using infrared dataset with annotated hand bounding boxes. Source domain was randomly sampled to align with IR dataset for every epoch. **4-6%** PCK improvement

Observations

- No matter which learning rate, or coral weight was chosen, coral_loss would converge very quickly after first few epochs. Two main reasons:
 - IR dataset uncomperably smaller, and much less diverse compared to source dataset. - Average Adaptive pooling was utilized to reduce hand feature
 - dimensionality from [2048, 8, 8] -> [2048, 1, 1], hence we can also not see perfect feature alignment on visualization graphs

SSA

Modular training of the model (separately hand roi net and body backbone) allowed for a hyperparameter tuning on a batch size of 64. Only training of body_backbone improved the baseline by + 3-5% PCK, despite body_backbone having full valid dimensions compared to hand roi net. Feature visualization shows only minimal alignment.

AdaBN is broadly compatible with complementary methods, requiring only test-data batch statistic recalibration pre-inference. While inducing strong feature alignment, integration yielded modest gains (+0.5–1.5% PCK), indicating BN updates alone insufficiently resolve pose estimation. InterWild's modularity enabled direct integration of optimal **SSA** (body backbone) and **DeepCORAL** (hand_roi_net) checkpoints, achieving an **11%** PCK improvement—demonstrating pretrained component integration outperforms standalone statistical adaptation.

Method InterWild AdaBN Deep CO SSA (boo Deep CO SSA (boo SSA (boo

> Despite spatial reductions, small scale unlabeled IR dataset, and modular based training, deep learning methods such as **SSA** and **DeepCORAL** have shown to be effective in improving accuracy of keypoint detection, as well as improving feature alignment of internal layers in InterWild architecture for RGB and IR domains.

Responsible professor: Jan van Gemert Supervisors: Zhi-Yi Lin, Thomas Markhorst Code available at: https://github.com/EraChanZ/RP

Ensembling & Conclusion

	Full Dataset			Cleaned Dataset		
	IOU	PCK@0.05	APCK	IOU	PCK@0.05	APCK
l (baseline)	0.625	0.656	0.498	0.718	0.777	0.650
	0.654	0.676	0.524	NA	NA	NA
RAL (hand)	0.675	0.741	0.585	0.763	0.840	0.705
ly)	0.646	0.693	0.543	0.710	0.753	0.635
RAL + AdaBN (best)	0.682	0.756	0.596	NA	NA	NA
ly) + AdaBN (best)	0.656	0.704	0.553	NA	NA	NA
ly) + DeepCORAL (hand)	0.717	0.780	0.617	0.787	0.874	0.727

Future work

Employ the complete InterWild architecture for training and systematic hyperparameter optimization applied to both SSA and DeepCORAL methods, leveraging enhanced computational resources to facilitate the process. construct large-scale synthetic hands dataset using infrared camera simulation in combination with 3d physics engines

Implement "Regressive Domain Adaptation for Unsupervised Keypoint Detection" Zhang et al. (2021) arXiv:2103.06175