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| Background

AI-driven code generation models @
offer opportunities and challenges
for both educators and students in ggi
programming education, such as:

-+-they allow students to concentrate on problem-
solving components by correcting syntax errors [1],
novice programmers perform better & faster with less
frustration [2]

-+-they help educators create curricula by generating
programming exercises and solution explanations[1].

- there are concerns regarding academic integrity and
users' over-reliance on auto-generated code [2].

Identification

These models have the potential to transform how
programming is taught and learned. However, there 1is
still a lack of understanding of how best to adapt
our educational practices to effectively manage the
challenges and benefits associated with their use.

Screening

) The Research Questions

How can code generation models be used in practices
for teaching and learning programming?

« RQ1: What are the practices that use code
generation models for teaching and learning
programming?

« RQ2: What are the characteristics of the code
generation models that are used in teaching and
learning practices?

« RQ3: What indicators are used for evaluating the
performance of code generation models 1in
teaching and learning practices?

« RQ4: What aspects should be considered when
utilizing code generation models in teaching and
learning practices?

Eligibility

3 Methodology

b Limitations

Systematic Literature Review
« to 1identify all empirical evidence that fits the pre-
specified criteria and minimize research bilas

PRISMA Flow Diagram: the paper selection process
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« lack of solid guidelines
« the dynamic nature of large language models

« studies only focus on programming education
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{i Results

22 assessment generation and evaluation

« Automatic generation of programming assignments, sample answers and
explanation, test cases, variations of questions

 Grade Assignments, generate feedback, identify areas students are
struggling

[ﬁ, Teaching Programming: Assistive tools for
[ ]

Learning Programming: Virtual Tutors for learners g.=
b

 Generate practise exercises, examplar solutions and T
solution alternatives

« Explain and improve student code, clarify error messages and provide
suggestions, support conceptual understanding, provide syntax tips

Huu Evaluating the Code Generation Models

« evaluating generated content according to qualitative criteria
(sensibleness, novelty, topicality, readiness for use) and
quantitative criteria (accuracy, how many tests passed, how many
lines of code is explained, etc.) [3,4]

Challenges and Ethical Considerations <

« Academic Integrity « Accuracy and Reliability
 Over-reliance on the tools, leading to 1issues of the models
loss of creativity and critical « Harmful biases in AI
thinking « Code reuse and licensing
 Appropriateness to novice programmers issues

What to do?

- embrace and integrate the code generation tools instead of .
focusing on detecting and preventing their use —c

 leave a transitional period for novice programmers

6 Conclusion

« Code generators in programming education presents a promising avenue
with possibilities to improve student’s learning experience and
alleviate the workload of teachers.

« However, ensuring safe usage is crucial as failure to address the
models’ accuracy limitations, risk of misconduct and over-reliance
pose a significant danger to computing education.

« Future studies should explore integrating AI code generators in
classrooms and designing programming assessments that encourage
critical thinking rather than relying on these tools as answer fi

generators.



