Use of Code Generation Models in Programming Education:

Doga Cambaz
d.cambaz@student. tudelft.nl

| Background

AI-driven code generation models @
offer opportunities and challenges
for both educators and students in ggi
programming education, such as:

-+-they allow students to concentrate on problem-
solving components by correcting syntax errors [1],
novice programmers perform better & faster with less
frustration [2]

-+-they help educators create curricula by generating
programming exercises and solution explanations[1].

- there are concerns regarding academic integrity and
users' over-reliance on auto-generated code [2].

Identification

These models have the potential to transform how
programming is taught and learned. However, there 1is
still a lack of understanding of how best to adapt
our educational practices to effectively manage the
challenges and benefits associated with their use.

Screening

) The Research Questions

How can code generation models be used in practices
for teaching and learning programming?

« RQ1: What are the practices that use code
generation models for teaching and learning
programming?

« RQ2: What are the characteristics of the code
generation models that are used in teaching and
learning practices?

« RQ3: What indicators are used for evaluating the
performance of code generation models 1in
teaching and learning practices?

« RQ4: What aspects should be considered when
utilizing code generation models in teaching and
learning practices?

Eligibility

3 Methodology

b Limitations

Systematic Literature Review
« to 1identify all empirical evidence that fits the pre-
specified criteria and minimize research bilas

PRISMA Flow Diagram: the paper selection process

Records identified from databases:

« ACM Digital Library (n=47)

» Scopus (n=115) Additional records

identified through
Google Scholar (n=79)

Records after removing
duplicates (n=217)

Records screened according to Records
the inclusion/exclusion excluded
criteria (n=36) (n=181)
Records assessed for Records
eligibility, based on methods excluded
and conclusion chapters GEL))
GEVAD)
Papers included (n=21) Coding and
Information
Extraction in
Atlas.ti

« lack of solid guidelines
« the dynamic nature of large language models

« studies only focus on programming education

References

in English

. Brett A Becker et al. “Programming Is Hard - Or at Least It Used to Be: EducationalOpportunities and Challenges of AI Code Generation”. In: Association for

Computing Ma-chinery, 2023, pp. 500-506. isbn: 9781450394314. doi: 10 . 1145 / 3545945 .

3569759. url:https://doi.org/10.1145/3545945.3569759.
. Majeed Kazemitabaar et al. “Studying the Effect of AI Code Generators on SupportingNovice Learners in Introductory Programming”. In: Association for Computing

Machinery,2023. isbn: 9781450394215. doi: 10.1145/3544548.3580919. url: https://doi.org/10.1145/3544548.3580919.

. Paul Denny, Sami Sarsa, Arto Hellas, and JuholLeinonen. Robosourcing Educational Resources -Leveraging Large Language Models for Learnersourcing. Nov. 2022. arXiv:

2211.04715 [cs.HC].

. Sami Sarsa, Paul Denny, Arto Hellas, and JuholLeinonen. “Automatic Generation of ProgrammingExercises and Code Explanations Using Large Lan-guage Models”. In:

Proceedings of the 2022 ACMConference on International Computing EducationResearch - Volume 1. ICER ’'22. Lugano and VirtualEvent, Switzerland: Association for

Computing Ma-chinery, 2022, pp. 27-43. ISBN: 9781450391948. D0I:10.1145/3501385.3543957.

a Systematic Literature ReV1ew s xoms mon

Responsible Professor: Fenia Aivaloglou

{i Results

22 assessment generation and evaluation

« Automatic generation of programming assignments, sample answers and
explanation, test cases, variations of questions

 Grade Assignments, generate feedback, identify areas students are
struggling

[ﬁ, Teaching Programming: Assistive tools for
[]

Learning Programming: Virtual Tutors for learners g.=
b

 Generate practise exercises, examplar solutions and T
solution alternatives

« Explain and improve student code, clarify error messages and provide
suggestions, support conceptual understanding, provide syntax tips

Huu Evaluating the Code Generation Models

« evaluating generated content according to qualitative criteria
(sensibleness, novelty, topicality, readiness for use) and
quantitative criteria (accuracy, how many tests passed, how many
lines of code is explained, etc.) [3,4]

Challenges and Ethical Considerations <

« Academic Integrity « Accuracy and Reliability
 Over-reliance on the tools, leading to 1issues of the models
loss of creativity and critical « Harmful biases in AI
thinking « Code reuse and licensing
 Appropriateness to novice programmers issues

What to do?

- embrace and integrate the code generation tools instead of .
focusing on detecting and preventing their use —c

 leave a transitional period for novice programmers

6 Conclusion

« Code generators in programming education presents a promising avenue
with possibilities to improve student’s learning experience and
alleviate the workload of teachers.

« However, ensuring safe usage is crucial as failure to address the
models’ accuracy limitations, risk of misconduct and over-reliance
pose a significant danger to computing education.

« Future studies should explore integrating AI code generators in
classrooms and designing programming assessments that encourage
critical thinking rather than relying on these tools as answer fi

generators.

