
Code extraction from a dependently typed language
Under which conditions is Java a suitable target language for code

extraction from Agda?

Lukas Zimmerhackl
L.K.Zimmerhackl@student.tudelft.nl

Supervised by:
J.G.H. Cockx and L.F.B. Escot

1. Agda
• Proof assistant and

functional programming
language

• Dependently typed
• Total language

2. Java
• Programming language
• Object-oriented
• Build-in garbage collector
• Large ecosystem
• Quite efficient

3. Motivation
• Allow more languages to use

Agda’s features
• Use Java’s efficiency
• Target the vast Java

ecosystem
• Target a type of language

Agda currently does not
compile to, object-oriented
languages

4. Implementation

5. Results

• Haskell outperforms
Java

• Java throws a stack
overflow for large
inputs

• Java has same
performance as
interpreted Scheme

7. Conclusion
• Java is not recommended as

a target language
• Java is constantly evolving

and there might be better
support in the future

• If JVM is desirable, target
Clojure or Scala

6. Limitations
• Java has no tail-call

optimization
• High memory usage
• No laziness implemented
• Pattern matching is buggy for

current implementation
• No natural number

optimization
• Java’s type system is

counterproductive

Fig. 1: Nat Datatype and consume function in Agda

Fig. 3: Consume function in Java Fig. 2: Nat Datatype in Java

Fig. 4: runtimes for consume function

8. Future work
• Laziness
• Native natural number

support
• Bug fixes
• Variable name sanitization

Code extraction from a dependently typed language
Under which conditions is Java a suitable target language for code

extraction from Agda?

Lukas Zimmerhackl
L.K.Zimmerhackl@student.tudelft.nl

Supervised by:
J.G.H. Cockx and L.F.B. Escot

1. Agda
• Proof assistant and

functional programming
language

• Dependently typed
• Total language

2. Java
• Programming language
• Object-oriented
• Build-in garbage collector
• Large ecosystem
• Quite efficient

3. Motivation
• Allow more languages to use

Agda’s features
• Use Java’s efficiency
• Target the vast Java

ecosystem
• Target a type of language

Agda currently does not
compile to, object-oriented
languages

4. Implementation

5. Results

• Haskell outperforms
Java

• Java throws a stack
overflow for large
inputs

• Java has same
performance as
interpreted Scheme

7. Conclusion
• Java is not recommended as

a target language
• Java is constantly evolving

and there might be better
support in the future

• If JVM is desirable, target
Clojure or Scala

6. Limitations
• Java has no tail-call

optimization
• High memory usage
• No laziness implemented
• Pattern matching is buggy for

current implementation
• No natural number

optimization
• Java’s type system is

counterproductive

Fig. 1: Nat Datatype and consume function in Agda

Fig. 3: Consume function in Java Fig. 2: Nat Datatype in Java

Fig. 4: runtimes for consume function

8. Future work
• Laziness
• Native natural number

support
• Bug fixes
• Variable name sanitization

