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1. Agda
• Proof assistant and 

functional programming 
language

• Dependently typed
• Total language

2. Java
• Programming language
• Object-oriented
• Build-in garbage collector
• Large ecosystem
• Quite efficient

3. Motivation
• Allow more languages to use 

Agda’s features
• Use Java’s efficiency
• Target the vast Java 

ecosystem
• Target a type of language

Agda currently does not
compile to, object-oriented 
languages

4. Implementation

5. Results

• Haskell outperforms
Java

• Java throws a stack 
overflow for large 
inputs

• Java has same
performance as 
interpreted Scheme

7. Conclusion
• Java is not recommended as 

a target language
• Java is constantly evolving 

and there might be better 
support in the future

• If JVM is desirable, target 
Clojure or Scala

6. Limitations
• Java has no tail-call 

optimization
• High memory usage
• No laziness implemented
• Pattern matching is buggy for 

current implementation
• No natural number 

optimization
• Java’s type system is 

counterproductive 

Fig. 1: Nat Datatype and consume function in Agda

Fig. 3: Consume function in Java Fig. 2: Nat Datatype in Java

Fig. 4: runtimes for consume function

8. Future work
• Laziness
• Native natural number 

support
• Bug fixes
• Variable name sanitization
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