Code extraction from a dependently typed language

Under which conditions is Java a suitable target language for code
extraction from Agda?

Lukas Zimmerhackl

L.K.Zimmerhackl@student.tudelft.nl

Supervised by:

J.G.H. Cockx and L.F.B. Escot

1. Agda

Proof assistant and
functional programming
language

* Dependently typed

* Total language

2. Java

* Programming language

* Object-oriented

* Build-in garbage collector
* Large ecosystem

* Quite efficient

4. Implementation

consume :
consume
consume {suc

).match(new NatVisitor

da) consume));

Fig. 3: Consume function in Java

r) visitor).suc(argl);

Fig. 2: Nat Datatype in Java

3. Motivation

* Allow more languages to use
Agda’s features

* Use Java’s efficiency

* Target the vast Java
ecosystem

* Target a type of language
Agda currently does not
compile to, object-oriented
languages

5. Results

Consuming Integers of size 2"

—— Haskell
— Java
4 —— scheme

v

* Haskell outperforms
Java 41

* Java throws a stack
overflow for large
inputs

* Java has same N
performance as

time (seconds)
w

interpreted Scheme p s

10

15 20 25 30
n

Fig. 4: runtimes for consume function

6. Limitations

* Java has no tail-call
optimization

* High memory usage

* No laziness implemented

* Pattern matching is buggy for
current implementation

* No natural number
optimization

* Java’s type system is
counterproductive

7. Conclusion

* Javais not recommended as
a target language

* Java is constantly evolving
and there might be better
support in the future

* If VM is desirable, target
Clojure or Scala

8. Future work

* Laziness

* Native natural number
support

* Bug fixes

* Variable name sanitization




Code extraction from a dependently typed language

Under which conditions is Java a suitable target language for code
extraction from Agda?

Lukas Zimmerhackl

L.K.Zimmerhackl@student.tudelft.nl

Supervised by:

J.G.H. Cockx and L.F.B. Escot

1.

Agda

Proof assistant and
functional programming
language

Dependently typed
Total language

2.

Java

Programming language
Object-oriented

Build-in garbage collector
Large ecosystem
Quite efficient

4. Implementation

data Nat :
zero : Nat
suc : Nat -> Nat

Set where

MNat - MNat

consume Zero = Zero

consume

consume (suc n) = consume n

Fig. 1: Nat Datatype and consume function in Agda

consume = (AgdalLambda) k -> {
return ((AgdaData) k).match(new NatVisitor()
{
public Agda zero ()
{

return k;

}
public Agda suc (Agda 1)
{
return runFunction(l, ((Agdalambda) consume));
}
IoH
I

Fig. 3: Consume function in Java

interface NatVisitor extends Visitor {
Agda suc (Agda argl);
Agda zero ();
}
abstract static class Nat implements AgdaData
{
}
static class zero extends Nat
{
public zero ()
{
¥
public Agda match (Visitor visitor)
{
return ((Natvisitor) visitor).zero();
}
}
static class suc extends Nat
{
private final Agda argl;
public suc (Agda argl)
{
this.argl = argl;
¥
public Agda match (Visitor visitor)
{

return ((NatVisitor) visitor).suc(argl);

H

Fig. 2: Nat Datatype in Java

3.

Motivation

Allow more languages to use
Agda’s features

Use Java’s efficiency

Target the vast Java
ecosystem

Target a type of language
Agda currently does not
compile to, object-oriented
languages

5. Results

Consuming Integers of size 2"

* Haskell outperforms
Java 41

* Java throws a stack
overflow for large
inputs &

* Java has same .
performance as

time (seconds)
w

—— Haskell
— Java
54 =—— scheme

interpreted Scheme

T T T T T T
5 10 15 20 25 30
n

Fig. 4: runtimes for consume function

6. Limitations

* Java has no tail-call
optimization

* High memory usage

* No laziness implemented

* Pattern matching is buggy for
current implementation

* No natural number
optimization

* Java’s type system is
counterproductive

7. Conclusion

* Javais not recommended as
a target language

* Java is constantly evolving
and there might be better
support in the future

* IfJVMis desirable, target
Clojure or Scala

8. Future work

* Laziness

* Native natural number
support

* Bug fixes

* Variable name sanitization




