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|. Background lll. Experiments and results

o \oral values are the abstract motivations that define what is right or wrong

» Moral values can be expressed in terms of five moral foundations [1]

e A natural environment for analyzing morality is social media by employing
Natural Language Processing (NLP) technigues

e Research gap: No study approaches the problem of transferability across

domains of the studied models
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o Motivation: Transferable models reguire less data, less resources and
usually lead to better performance
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