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Spectral Monte Carlo rendering is a state-of-the-art technique for
physically based rendering. It estimates the radiance entering a
pixel by approximating the rendering equation [2]:

It can accurately simulate complex optical phenomena by treating
light as a spectrum of electromagnetic radiation, instead of relying
on trichromatic values such as (R, G, B).

However, convergence is slow, particularly due to the need to
sample the wavelength domain during the Monte Carlo procedure.
To address this, multiple techniques were proposed, most of them
involving sampling multiple wavelengths per path.

Most notably, hero wavelength spectral sampling [1] consists of
sampling a primary hero wavelength for each path, and additional
wavelengths are placed at equal distances from the hero
wavelength to ensure they always cover the visible spectrum
evenly.

Although this provides robust spectral coverage, it may prove
inefficient in the case of complex illuminant spectra, as pictured in
Figure 1.

For a given path, the goal is to sample N wavelengths from N
probability distributions                                            using a single
random number u. Then a Monte Carlo estimate is computed
using multiple importance sampling [2]:

where                                                             are the color matching
functions [3], R is the product of the reflectance spectra
encountered along the path, I is the illuminant spectrum, and
are the inverse CDFs of the optimized PDFs.

The sampling strategy should be independent of the reflectance
spectra, so we set its value to 1. Therefore the expected value of the
estimator becomes the color of the illuminant in the XYZ color
space [3].

Ideally, the estimator dependence on u is small, such that the
perceived variance is minimal. This can be visualized in Figure 2.

Therefore, we optimize the probability distributions based on the
objective function:

where ΔE measures the perceived color difference. [8]

An initial set of probabilities is handed to a non-linear optimizer,
which then iteratively optimizes them to minimize the objective
function.

Our method was evaluated against the standard wavelength
sampling procedure in PBRT, which f irst samples a wavelength
uniformly. The other wavelengths are selected by placing them at
a constant distance from the f irst one, similar to hero wavelength
sampling [1].

We used a number of pre-made scenes from Benedikt Bitterli’s
website [6]. The scenes selected have either a single emitter, or a
small number of emitters, all of them set to use the same emission
spectrum.

A variety of illuminants with different spectral power distributions
were selected from the Lamp Spectral Power Distribution
Database (LSPDD) [7].

The performance was assessed by measuring the perceptual error
of the proposed method against a ground truth image rendered at
a high sample count using the baseline method. The result was
then compared with the error obtained by the baseline method, at
the same sample count. Some results of the evaluation are listed in
Table 1:

Furthermore, as Table 1 suggests, the only additional
computational cost of our approach is the optimization step, which
might take longer. However, this is a one-time, offline process
performed once for each illuminant spectrum, and does not
impact render performance.

     The main contribution of this study consists of:

A preprocessing step, in which we optimize a set of probability
distributions for sampling multiple wavelengths from an illuminant
spectrum, based on the perceived color difference.

Assessment of whether this method can improve the perceptual
quality of the rendered image in single-emitter scenes when
compared to sampling wavelengths uniformly.
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4. Implementation

The evaluation demonstrates that this method can significantly
reduce perceptual error compared to uniform sampling in single-
emitter scenes, particularly scenes featuring illuminants with
complex spectral power distributions, while incurring no
computational overhead during rendering.

The optimization was implemented using the Python libraries SciPy
and Ipopt [4], which provide a solid collection of solvers suitable for
high-dimensional, non-linear optimization problems.

For rendering, PBRT-v4 [5] was used, and modified to implement the
custom wavelength sampling procedure.

5. Evaluation and Results

6. Conclusions 

Figure 1: Sampling multiple wavelengths in a smooth versus
“spiky” illuminant.

Figure 2: Illustration of the perceptual variance of the estimator using a color bar. The
resulting color of the estimator is plotted for a very large number of samples in the
interval [0, 1[. Ideally, this color bar should be constant. The left color bar is obtained

after optimization, while the right color bar uses the initial distributions

Table 1: Comparison of perceptual difference (∆E) and render times across various
scenes and illuminants between uniform sampling and our custom method.

Figure 3: Comparison of baseline versus our method against the ground truth (right),
for the Cornell Box scene [6], using a Globe Twister illuminant (LSPDD index 2723) at

512 samples per pixel.

Figure 4: Comparison of our method (middle) versus the baseline (right) against the
ground truth for the wooden staircase scene [6] using the Globe Twister emitter at

1024 samples per pixel. 
 


