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Privacy Attacks on Decentralized Learning Systems that Exchange Chunked Models
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Attacks Dataset 1 matching * Static and random chunking reduce linkability with full epochs.
« Membership Inference: Determine if a Nelghbar evaﬁﬁ:im * Hungarian matching consistently outperforms minimum-loss matching.

specific sample was in the training set of a /
node using shadow models [2]. |
* Linkability: Infer the origin node of a

chunk [1, 3].

In both attacks:

* Avoiding full epochs reduces attack performance.

* Cyclic chunking and no chunking show similar behavior, as do static and
random chunking.

* Attack performance depends on data heterogeneity and chunking strategy.
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Chunklng Methods

Static: Share the same chunk to each
neighbor every round.
* Cyclic: Rotate the chunk that is shared to a

5 Limitations 6 Conclusion

neighbor over rounds. * Lack of randomness in MNIST limits attack effectiveness. Model chunking does not eliminate privacy risks. It reduces linkability under
* Random: Randomly select which chunk to || * Both datasets have 10 classes. A higher number of classes would certain conditions but increases vulnerability to membership inference.

Atz LRI FliEE performanc?. . Future work can investigate other privacy attacks, expand work on
* None: Share all model parameters. * LeNet model lacks complexity, especially for CIFAR-10 data.

j o ) membership inference and linkability, and investigate other defenses.
* Experiments use IID data, non-lID conditions would improve attack
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