Evaluating the correctness and safety of hBFT with ByzzFuzz. -ifu Delft

Attila Birke Dr. Burcu Kulahcioglu Ozkan
A.B.Birke@student.tudelft.nl Jodo Miguel Louro Neto
1. Background 3. Method 4. Results
istri i e Implemented the hBFT protocol in ByzzBench.
° I_DIStrIb_Uted systems are used all aro_und the W0r|d, n p p .y Agreement | Liveness Drop Message Weight | Mutate Message Weight | Agreement | Liveness
financial transactions, cloud computing, etc. ¢ Implemented structure aware mutations. ss [as |5 0 0 1 0
o Byzantine Fault Tolerance (BFT) allows a distributed e Tested hBFT with ByzzFuzz and baseline testing methods. N=0 P=1 | 1 00 0 0 % 0 0
. N=0 P=2 2 1 0 0 0 50 1 0
system to withstand several Byzantine Faults. e Evaluated the difference between small-scope and any-scope N=1 P-1 1 o0 | o o 25 25 0 0
. . . i N=1 P=2 1 0 0 0
e Testing is crucial to ensure the safety of BFT message mutations. N2 p-1 o oo o s 50 0 0
) = = 50 25 0 0
algorlthms. Message Mutations N=2 p=2 E E 0 o 50 50 0 0
e Lack of automated testing algorithms. <PREPARE, v, n, d(m), m, c> <PREPARE, V', n, d, m, c> Figure 2. Results of ByzzFuzz (left) and baseline (right) of testing hBFT.
<PREPARE,v,n',d, m,c>
e hBFT [1] is a leader-based protocol that uses <COMMIT, v, n, d(M), d{m), m,c> <COMMIT, v, n, d(M), d(m), m, c> Agvee‘mem lee‘"ess DlopMessageWelghl| Mutate Message Weight | Agreement| Liveness
) <COMMIT, v, ", d(M), d(m), m, c> Ss | as | ss | as 0 25 5 0
sPeCU|at|0n' <CHECKPOINT, n, d{M)> <CHECKPOINT, ', d(M}> N=0 P=1 79 1 0 o0 0 50 8 0
e ByzzFuzz [2] is a randomised testing algorithm, <CHEGKPOINT, n, d(t)> N=0 P=2 |126 3 |0 0
K <VIEW-CHANGE, v, P, Q, R> <VIEW-CHANGE, v',P, Q,R> N=1 P=1 |61 1]0 o 25 25 2 0
which uses round-based structure-aware small- <VIEW-CHANGE, v, P', Q, R> N-1 P2 |97 s lo o 25 50 4 0
scope mutations. <VIEW-CHANGE, v, P, @', R> - -
p <VIEW-CHANGE, v, P, Q, R*> N=2 pP=1 |47 0|0 0 %0 e 1 0
<NEW-VIEW, v, V, X, M> <NEW-VIEW, v', V, X, M> N=2 P=2 |74 4 |0 O 50 50 1 0
<NEW-VIEW, v, V', X, M> Figure 3. Results of ByzzFuzz (left) and baseline (right) of the bug injected version of hBFT.
<NEW-VIEW,v,V, X', M>
2. Research QUEStIOﬂS <NEW-VIEW, v, V, X, M'> Agreement
Small Scope- "sync" | Small Scope- "async"
. Figure 1. Structure aware mutations implemented for hBFT. = =
e RQ1: To what extent is ByzzFuzz able to 9 P ::8 E:; g S
evaluate the correctness and safety of hBFT? N1 P-1 0 0
5. Conclusion
e RQ2: Can ByzzFuzz find any bugs in the) N=1 P=2 3 i

implementation of the hBFT protocol? o ByzzFuzz found a potential violation, an injected bug, Figure 4. Results of ByzzFuzz in the controlled (forced) environment of reproducing the known bug.
e RQ3: How does the bug detection performance of and under controlled environment a known violation.
ByzzFuzz compare to a baseline testing method o ByzzFuzz is effective at discovering bugs in the 6. Limitations

that arbitrarily injects network and process faults?

implementation of hBFT.

e ByzzFuzz is more effective than baseline methods.

e Small-scope mutations are better at finding bugs than
any-scope mutations.

e RQ4: How do small-scope and any-scope message
mutations of ByzzFuzz compare in their
performance of bug detection for hHBFT?

e Due to the high number of mutations, it is hard to discover the known
bug, which would require a higher number of scenarios.

e Our implementation of ByzzFuzz does not cover “bounded-liveness”.

e Our implementation of hBFT might be different from the paper in some

References aspects, thus any bugs found are specific to our implementation.

[1] Sisi Duan, Sean Peisert, and Karl N. Levitt. hbft: Speculative byzantine fault tolerance with minimum cost. IEEE Transactions on Dependable and Secure Computing, 12(1):58-70, 2015.
[2] Levin N. Winter, Florena Buse, Daan de Graaf, Klaus von Gleissenthall, and Burcu Kulahcioglu Ozkan. Randomized testing of byzantine fault tolerant algorithms.7(OOPSLAL1), April 2023.

	Slide 1

