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1. Background 3. Method 4. Results
istri i e Implemented the hBFT protocol in ByzzBench.
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) = = 50 25 0 0
algorlthms. Message Mutations N=2 p=2 E E 0 o 50 50 0 0
e Lack of automated testing algorithms. <PREPARE, v, n, d(m), m, c> <PREPARE, V', n, d, m, c> Figure 2. Results of ByzzFuzz (left) and baseline (right) of testing hBFT.
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e ByzzFuzz [2] is a randomised testing algorithm, <CHEGKPOINT, n, d(t)> N=0 P=2 |126 3 |0 0
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which uses round-based structure-aware small- <VIEW-CHANGE, v, P', Q, R> N-1 P2 |97 s lo o 25 50 4 0
scope mutations. <VIEW-CHANGE, v, P, @', R> - -
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<NEW-VIEW, v, V', X, M> Figure 3. Results of ByzzFuzz (left) and baseline (right) of the bug injected version of hBFT.
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2. Research QUEStIOﬂS <NEW-VIEW, v, V, X, M'> Agreement
Small Scope- "sync" | Small Scope- "async"
. Figure 1. Structure aware mutations implemented for hBFT. = =
e RQ1: To what extent is ByzzFuzz able to 9 P ::8 E:; g S
evaluate the correctness and safety of hBFT? N1 P-1 0 0
5. Conclusion
e RQ2: Can ByzzFuzz find any bugs in the ) N=1 P=2 3 i

implementation of the hBFT protocol? o ByzzFuzz found a potential violation, an injected bug, Figure 4. Results of ByzzFuzz in the controlled (forced) environment of reproducing the known bug.
e RQ3: How does the bug detection performance of and under controlled environment a known violation.
ByzzFuzz compare to a baseline testing method o ByzzFuzz is effective at discovering bugs in the 6. Limitations

that arbitrarily injects network and process faults?

implementation of hBFT.

e ByzzFuzz is more effective than baseline methods.

e Small-scope mutations are better at finding bugs than
any-scope mutations.

e RQ4: How do small-scope and any-scope message
mutations of ByzzFuzz compare in their
performance of bug detection for hHBFT?

e Due to the high number of mutations, it is hard to discover the known
bug, which would require a higher number of scenarios.

e Our implementation of ByzzFuzz does not cover “bounded-liveness”.

e Our implementation of hBFT might be different from the paper in some
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