
 

The Random Walker works by assigning labels to voxels based on their
likelyhood to arrive at a labeled seed point. This likelyhood is defined by a

weight function          , that indicates weights between neighbouring voxels   and   
, based on their similarity. For the original RW this is based on intensity.

 

Based on similarity in
intensities:

1. Original RW:

 

Based on similarity in
average prediction:

2. Mean Prediction:

 

Based on similarity in average
prediction + intensities:

4. Adaptive Alpha:

 

Improving the Random Walker algorithm for interactive 3D
medical image segmentation using AI predictions

1.Introduction
 The segmentation of anatomical structures in 3D medical images is often

performed using Active Learning (AL), due to the limited accuracy of automated
algorithms.  As proposed by [1], segmenting a 3D image using AL is an

interactive process where a user iteratively improves the algorithm by annotating
initial labels aswell as additional labels.
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Figure 1: Simplified illustration of interactive image segmentation
 
 

A Random Walker (RW) [2] is used by [1] as the segmentation algorithm. In this
research, we will replicate [1] and combine the input data with an ensemble of

segmentation predictions obtained by a trained Bayesian Deep Neural Network [3].
This research aims to answer the following question:

 How can the performance of the Random Walker for interactive
3D image segmentation be improved by integrating an

ensemble of AI-based segmentation predictions?

2. Research Question

Figure 2: Ilustration of research question

Figure 3: The 4 methods presented in this research. I_i corresponds to the intensity of voxel
i and P_mean,i the mean prediction for voxel i. σ represents the standard deviation.

 
 

Lastly, methods 2 and 3 will be evaluated as a weighted sum with method
1 for some α:

3.Methodology
Random Walker

Based on similarity in
unanimous prediction:

3. Unanimous Vote:

 

Integrate AI predictions
We have an ensemble P consisting of N predictions, each labeling a voxel in the
image, either 1 or 0. To modify the weight function to integrate P, we compare

4 methods:

↑Figure 4:DICE scores after the second iteration
using Mean Prediction method for different α. 

↑Figure 5: DICE scores after the second iteration
using Unanimous Vote method for different α. 

 

←Figure 6: DICE scores after first iteration (top)
and second (bottom). This figure shows results of
Mean Prediction, Unanimous Vote (both using α =

0), the Original RW and Adaptive Alpha. 
 

α = 0.0 performs the best
Correlation between α and score
seems exponential
Optics produce worst results

Both fig 4 and 5 show:

 

4. Results
The following results are obtained by testing on a MICCAI dataset [4]. Each figure

shows boxplots indicating the average DICE Coefficients of 10 patients, for 9
different organs. The last position on the x-axis shows the average of all organs.

 

Adaptive Alpha performs the
best
Unanimous Vote outperforms
Mean Prediction
All better than Original RW
All perform worst for optics

Fig 6 shows:

 

Modify the weight function to rely on an ensemble of segmentation predictions
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5. Discussion
All methods performed the worst on optical organs. This is likely because
these are the smallest organs and thus there is limited information and more
sensibility for artifacts.
α = 0 outperforms all other values for α. This is likely because seedpoints are
far away from most voxels, as 2 iterations only provide little user input and
the original weight function decreases faster than prediction based, as image
intensities have more variance overall.
Unanimous Vote performs better than the Mean Prediction. This is likely
because by minimizing the influence of non-unanimous votes it reduces
sensitivity to prediction variances.
Adaptive Alpha outperforms all methods. This makes sense as by summing
the data beforehand, it gives a representation of edges/boundaries in the
image depending on both the predictions and intensities.

 

6. Conclusion & Future Work

By minimizing the dependence on non-unanimous predictions it
performs better than considering only the average predictions
When combining normalized average prediction with the image
intensities beforehand, it outperforms all other methods including the
original RW. 
Summing the different weight functions afterwards with the original
weights does not increase performance.

It would be beneficial to test on less accurate predictions.
Additionally, it would be beneficial to define an indication of certainties
for each voxel, both for the predictions and the image intensities. This
could be based on for example the standard deviation.
Lastly, to make the certainty values less sensitive for outliers, it is a
desired future work to only take into account values in a local
neighbourhood around each voxel.

The main findings are:

For future work:
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