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Setting Layers Neurons Observation

Small sample size (n = 25, 50, 100) 4 - 5 25 Deep and narrow networks performed best. Shallow models
underfit, wide ones overfit.

Moderate sample size (n = 500) 3 - 4 100 - 200 Wider networks became viable, moderately deep and wide
architectures performed well.

Low dimensionality (d = 10) 5 100 Deep networks performed well across all variants (confounding
only, noise, outcome-relevant).

Treatment heterogeneity in low
dimensionality (d = 10) 1 - 2 25, 200 Moderate depth and width offered best generalization; deeper

networks began overfitting.

Low confounding strength (ξ = 0.1, 0.3, 0.5) 4 - 5 25 - 100 Deep networks remained effective; narrower widths reduced error
in low-signal settings.

High dimensionality, low signal (d = 100) 5 25 Deep and narrow networks resisted overfitting to irrelevant
features.

High dimensionality, high signal (d = 50) 5 500 Complex signal best captured by both higher depth and width.

EMPIRICAL STUDY ON THE IMPACT OF NETWORK ARCHITECTURE
ON CAUSAL EFFECT ESTIMATION WITH TARNET

How does varying the hyperparameters, specifically the number of layers
and neurons per layer, in a TARNet neural network affect the performance of
Conditional Average Treatment Effect (CATE) estimation on simulated
datasets?
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1. INTRODUCTION

SUB-QUESTIONS
1.How does TARNet's performance vary across different data regimes (e.g., confounding strength, input dimensionality, and dataset size) when

using a fixed architecture?
2.How does the optimal TARNet architecture change in response to these data characteristics?
3.Based on the findings above, what practical recommendations can be made for selecting TARNet architectures under varying data conditions?

3. METHODOLOGY

2. RESEARCH QUESTION

5. FIXED DATA SETTINGS EXPERIMENTS

4. FIXED ARCHITECTURE EXPERIMENTS

No Universal Architecture: Optimal TARNet architecture is sensitive to the data characteristics, not universal.
Deeper is Often Better: Deeper networks generally outperform shallower ones, especially in high-dimensional or noisy data.
Width Depends on Data Quality: It should adapt to the sample size and noise → narrower for small/noisy data, wider for large/clean data.
Stability Trade-Off: The lowest error doesn't always guarantee model stability; robust, moderately complex models often provide more consistent
performance across different neuron counts.
Limitations: Assumes no unobserved confounders; relies on synthetic data (with specific data-generating processes); findings are TARNet-
specific; constrained hyperparameter search space.
Future Work: Validate on real-world datasets, compare with other causal models (DragonNet [2], CFRNet [1]), and investigate combined
hyperparameter tuning.

7. CONCLUSIONS
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Estimating causal effects from observational data is
essential in fields like healthcare, economics, and
education.
Neural networks, such as TARNet [1], can support
causal inference by learning representations that
reduce confounding.
While effective, TARNet’s architecture (number of
layers, neurons) has not been systematically studied.
This research explores how architectural
hyperparameters impact Conditional Average
Treatment Effect (CATE) estimation accuracy, aiming
to guide model design in causal tasks.

Causal Inference -  Process of estimating the effect of an intervention or treatment from
data where random assignment is not possible.
Treatment Effect - Difference in outcomes between treated and untreated groups.
CATE - Expected treatment effect for individuals with specific characteristics
Confounding - When a variable influences both treatment assignment and the outcome,
biasing causal estimates if not properly accounted for.
Overlap (or Positivity) - Assumption that every individual has a non-zero probability of
receiving each treatment; necessary for valid comparisons between groups.
Representation Learning - Learning transformations of input features to better separate
relevant signal (e.g., treatment effects) from noise or confounders.
TARNet (Treatment-Agnostic Representation Network) - A neural network that
estimates potential outcomes for treatment and control groups by learning shared
representations.
TNet -  An architecture that trains separate models for the treated and control groups to
estimate potential outcomes.

KEY TERMS

Figure 1: CATE RMSE vs confounding strength for
default TARNet architecture with TNet baseline

Figure 2: CATE RMSE vs number of confounders in a
fixed dimensionality (TARNet and TNet baseline)

Figure 3: CATE RMSE vs number of confounders equal
to dimensionality (TARNet with TNet baseline)

Figure 4: CATE RMSE vs dimensionality for TARNet with
correlated and uncorrelated covariates

TARNet (SNet1) outperformed the TNet baseline in almost all settings.
Why? → Learning a shared representation for control and treatment 
groups generalizes better than modeling each group separately.

TARNet performs better with correlation in the data (Figure 4), especially when dimensionality
increases.

Why? → Shared layers leverage correlations for compact learning and better generalization.
RMSE grew with confounding strength (Figure 1) or confounder volume ( = dimensionality, Figure 3)

Why? → More confounding complicates accurate CATE estimation
RMSE formed an inverted U-shape when increasing the number of confounders within a fixed
dimensionality (Figure 2)

Why? → Initial spike due to introducing confounding, later decline due to reduced noise

A grid of around 30 different architectures was tested in fixed data settings: small sample size, low dimensionality, low signal/confounding,
high dimensionality

Neurons per layer: 25, 50, 100, 200, 300, 500
Layers: 1, 2, 3, 4, 5

Fixed architecture:
3 layers with 200

neurons

Table 1: Summary of best-performing TARNet architectures across different data regimes.

6. FINAL RECOMMENDATIONS

Generally use deeper architectures, but consider the context. 

Adjust network width based on sample size and signal quality.

Explore the role of correlated feature structures for TARNet.

Consider stability, not just absolute best performance.

Avoid unnecessary complexity.

Validate empirically on your specific data.
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