
Hyperledger Fabric
▪ A “permissioned distributed ledger technology platform” [2]
▪ Solves many enterprise-level issues of traditional, permissionless
▪ blockchain technologies such as Bitcoin or Ethereum

Secure access control in Fabric
▪ Currently implemented by X.509 user certificates
▪ Must be issued by Certificate Authorities (CA’s)
▪ Must be validated by Membership Service Providers (MSP’s)

Research into attribute-based access control
▪ Has been performed in many studies such as [3], [4] and [5]
▪ Has not been much applied specifically in the context of Fabric
▪ The concept of combining multiple ID’s, attributes, and policies has
▪ not been studied in-depth

Problems
▪ Lack of decision variables for access control decisions
▪ Potential of role explosion in large-scale organizations
▪ Inability to effectively implement the principle of least privilege

▪ Potential to expose sensitive business information to unintended users
▪ Potential to be too restrictive and exclude users from required information

Combining Multiple ID’s, Attributes, and Policies to Provide Secure Access Control within Hyperledger Fabric
Author: Daan Gordijn, Supervisor: Roland Kromes, Responsible Professor: Kaitai Liang
Cyber Security Group, Delft University of Technology

4. Design
Current Implementation
▪ Certificate Authorities and Membership Service Providers provide the first

layer of security by checking if certificates are issued by trusted parties

Proposed Implementation
▪ Multiple attributes can be combined by combining one or multiple attribute

checks (EQUALS, INCLUDES) using Boolean operators (AND, OR, NOT)

▪ Multiple policies can be combined by having a smart contract maintain a
different access policy for each operation that can be performed with it

▪ Multiple ID’s can be combined by hashing and signing a “parent certificate”,
and storing this hash and signature in the “child certificate”

▪ By maintaining all parent certificates in a hashmap on the shared ledger,
smart contracts on the blockchain can retrieve and verify these certificates

5. Results

▪ A security smart contract extracts a client’s certificate and determines
whether access should be granted or denied, based on the provided policy

▪ Any other smart contract can invoke this “special” smart contract to
determine whether it should handle the submitted request or deny access

6. Conclusions

9. References

2. Research Question

Q: “How can secure access control in Hyperledger Fabric be guaranteed by
combining multiple ID's, attributes, and policies with the components that
regulate access control?”

▪ What is Hyperledger Fabric?
▪ What is secure access control in the context of Fabric?
▪ What are the components that regulate access control in Fabric?
▪ How can multiple ID's, attributes, and policies be combined in Fabric?
▪ How are the components for access control currently interacting in Fabric?
▪ What is the performance impact of ID-, attribute-, and policy-based access

control in Fabric?

1. Background
▪ In this study, a new implementation for secure access control within

Hyperledger Fabric blockchain technology has been proposed

▪ Multiple attributes have been combined using a simple scheme that build
access policies by combining attribute checks with Boolean operators

▪ Multiple policies have been combined by storing multiple access policies
on the blockchain ledger, and dynamically selecting the suitable one

▪ Multiple ID’s have been combined by setting the hash and signature of a
parent certificate as attributes while storing these parents on the blockchain

▪ The security smart contract, certificate generation tool (“certgen”), and demo
application have been implemented and are publicly available via GitHub1

▪ The runtime overhead caused by the invocation of the special smart contract
was analyzed, and has shown to be minor in comparison with the base case

[1] IPFS Community. “IPFS Documentation”. [Online]. Available:
https://docs.ipfs.io/. Accessed: May 12, 2022.
[2] Hyperledger Fabric Community. “Hyperledger Fabric Documentation”.
[Online]. Available: https://hyperledger-fabric.readthedocs.io/en/latest/.
Accessed: May 12, 2022.
[3] L. Song, M. Li, Z. Zhu, P. Yuan, and Y. He, “Attribute-Based Access
Control Using Smart Contracts for the Internet of Things”, in Procedia
Computer Science, 2020, pp. 231-242, doi: 10.1016/j.procs.2020.06.079.
[4] S. Ding, J. Cao, C. Li, K. Fan, and H. Li, “A Novel Attribute-Based Access
Control Scheme Using Blockchain for IoT”, in IEEE Access, 2019, pp. (99):1-1,
doi: 10.1109/ACCESS.2019.2905846.
[5] X. Zhao, S. Wang, Y. Zhang, and Y. Wang, “Attribute-Based Access
Control Scheme for Data Sharing on Hyperledger Fabric”, in Journal of
Information Security and Applications, 2022, pp. 103182, doi:
10.1016/j.jisa.2022.103182

3. Methodology

Combination of literature research and implementation of custom smart
contracts which provide access control using ID’s, attributes, and policies.

Milestone 1
▪ Study Hyperledger Fabric Documentation
▪ Setup Local Test-Network

Milestone 2
▪ Study Literature
▪ Implement X.509 Generation CLI (Using Fabric CA)
▪ Implement Smart Contract 1 (“Access Controller”)

Milestone 3
▪ Study Literature
▪ Implement Smart Contract 2 (Live Demo)
▪ Implement Client Application (Live Demo)

Milestone 4
▪ Study Literature
▪ Analyze Performance

Milestone 5
▪ Formulate Conclusions
▪ Formulate Future Work

7. Future Work
▪ Research if it is possible to improve the runtime of the current access control

smart contract to reduce the latency and improve the throughput

▪ Research if it is possible to allow users to set multiple parent certificates,
either by allowing array-typed attributes or by performing recursive lookups

▪ Research if it is possible to allow more extensive policy definitions, for
example by providing clients with more check or operator types

▪ Research if it is possible to store the private keys of clients in Hardware
Security Modules (HSM) to improve the security of the private keys

8. Definition of Terms
CA: Certificate Authority
IoT: Internet of Things
HSM: Hardware Security Module
IPFS: InterPlanetary File System [1]
MSP: Membership Service Provider

ORG#: Organization “#”, which can transact on the channel
X.509: Standard defining the format of public key certificates
Chaincode: Deployed package of one or more smart contracts

▪ The latency of this aforementioned “security smart
contract” is almost linear with respect to the number
of attributes that it needs to check

▪ For real-world cases, the increase in latency with
respect to the number of attribute checks is minor

Latencies (Access with “own attributes”)
▪ 1 attribute 0.04 seconds
▪ 1000 attributes 0.07 seconds
▪ 10,000 attributes 0.31 seconds
▪ 100,000 attributes 3.12 seconds

Latencies (Access with “parent attributes”)
▪ 1 attribute 0.05 seconds
▪ 1000 attributes 0.07 seconds
▪ 10,000 attributes 0.37 seconds
▪ 100,000 attributes 3.40 seconds

Figure 2. Combining multiple identities Figure 1. Combining multiple attributes and policies

1 Available via https://github.com/daangordijn/Fabric-Access-Control

https://docs.ipfs.io/
https://hyperledger-fabric.readthedocs.io/en/latest/

