

Introduction

While data sharing is crucial for knowledge development, privacy concerns and strict regulation unfortunately limit its full effectiveness. Synthetic tabular data emerges as an alternative to enable data sharing while fulfilling regulatory and privacy constraints.

In this paper, we build upon the state-of-the-art in tabular data synthesis CTAB-GAN [1]. We introduce LCT-GAN, which consists of an embedding solution and a novel conditional GAN operating on latent space.

Background

GANs

Generative Adversarial Networks (GANs) [2] are a dual neural network architecture, which aims to learn a dataset's probability distribution, thus has the ability to generate new samples of data.

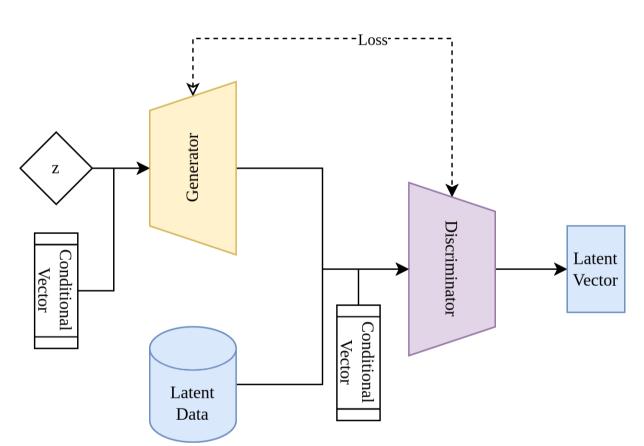


Figure 1. Architecture diagram of a Conditional GAN

Autoencoders

Autoencoder [3] is a neural network architecture, consisting of encoder (down-sampling), bottleneck (lowdimensional space) and decoder (up-sampling). If after training, the output is the same as the input, the network has learned a latent representation of the data in the bottleneck.

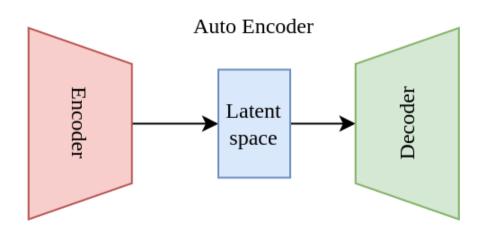


Figure 2. Architecture diagram of an autoencoder

LCT-GAN - Improving the efficiency of tabular data synthesis via latent embeddings

Viktor Velev

Supervisor(s): Zilong Zhao¹, Lydia Chen¹

¹Distributed Systems Group at EEMCS, Delft University of Technology, The Netherlands

Motivation and Problem Outline

• **Privacy is a key challenge** for sharing data in industry due to strict privacy regulations.

 Synthetic tabular data is an emerging **solution** to enable scientific discoveries while respecting data privacy.

 Encoding tabular columns leads to very high-dimensional data.

 High-dimensional data leads to a lot of computational overhead.

			Netherl	ands	E	22				
		Netherl	Netherlands		Psychologist					
			Switze	rland	A	chitect	46			
			Bulga	aria	E	ngineer	29			
		Switzer	Switzerland A		countant	21				
	Numeri Encodi									
					\bigvee	7				
	Netherlands	Switzerland	Bulgaria	Engi	neer	7 Psycholo	-			
	Netherlands 1	Switzerland 0	Bulgaria 0	Engi 1		7	-			
						7 Psycholo	-			
	1	0	0	1		7 Psycholo 0	-			

Figure 3. Illustration of the dimensionality explosion problem

Research Question

Can we improve the efficiency of high-dimensional tabular data synthesis via latent embeddings?

Methodology

 Introducing latent embeddings via autoencoder as dimensionality reduction Novel Conditional GAN operating on latent space.

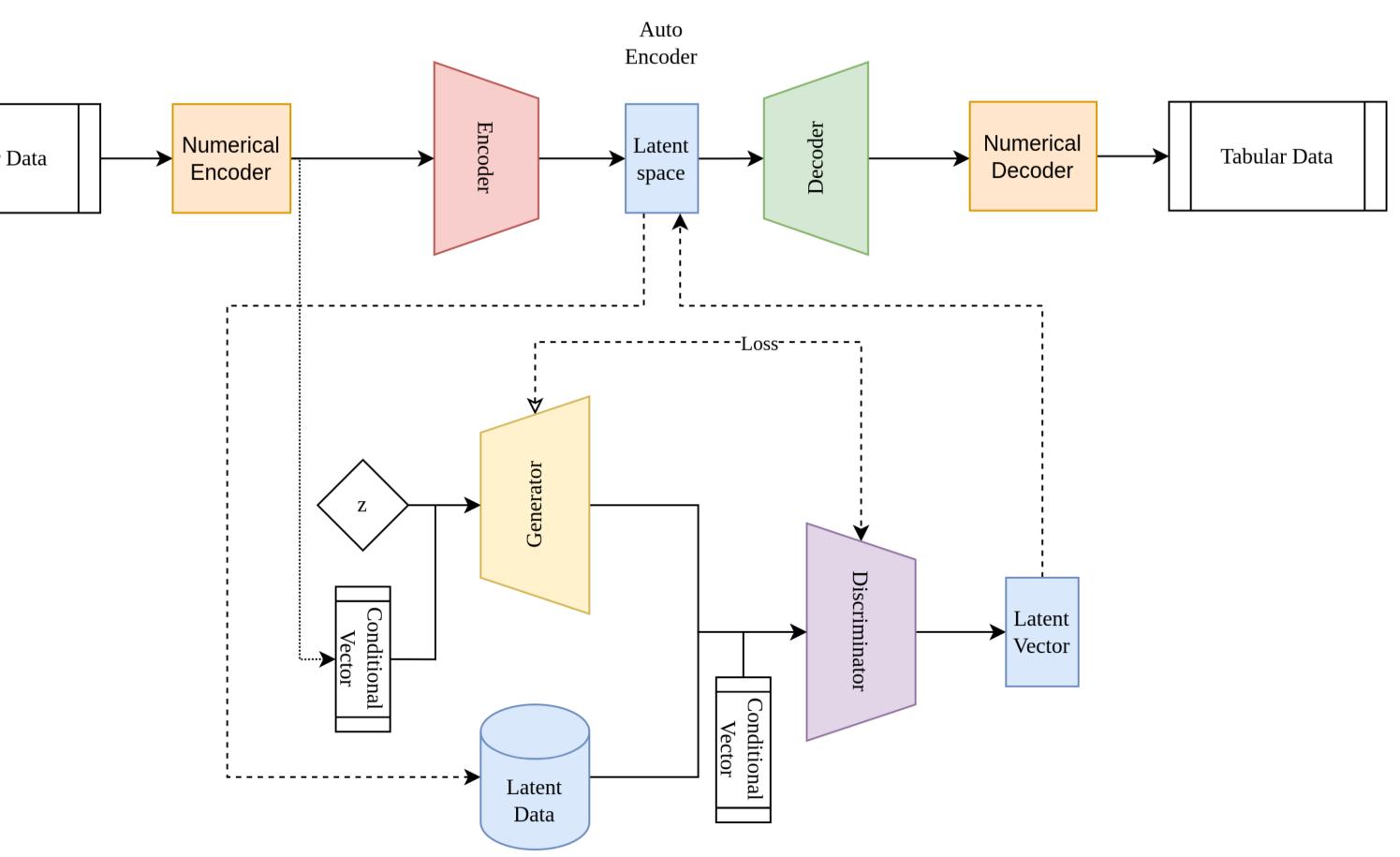
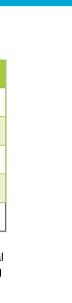
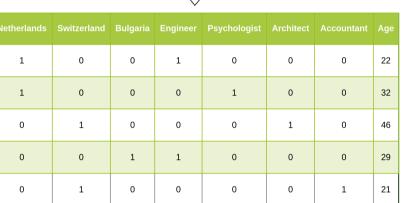


Figure 4. LCT-GAN Architecture overview





Statistical similarity

Wasserstein Distance Jenson-Shannon Divergence Difference in pair-wise correlation

Machine Learning based analysis

Accuracy, F1 score, AUC Linear Regression, Decision Trees, Random Forest MLP

Popular datasets: Adult, Credit, Covertype, Loan

Results

Evaluation

In high-dimensional datasets (such as Covertype), we achieved up-to **30% im**provement in specific evaluation metrics, compared to the current stateof-the-art, alongside up-to 200x faster training per epoch and up-to 5x lower memory footprint.

Approach	Training Time	Accuracy Diff	AUC	F1-Score	Avg. WD	Avg. JSD	Diff Corr	s/epoch
	15 minutes	36.83585	0.39111	0.43352	0.02652	0.03939	5.18157	606.00
CTAB-GAN	30 minutes	37.77141	0.39083	0.42852	0.02393	0.03989	4.93570	612.76
	60 minutes	37.44809	0.38852	0.42228	0.02506	0.04036	4.86093	608.14
	15 minutes	29.15499	0.24819	0.29968	0.08067	0.05759	5.38522	2.93
LCT-GAN	30 minutes	27.52151	0.23035	0.32369	0.05780	0.04830	4.81472	2.95
	60 minutes	24.45717	0.20414	0.27737	0.05125	0.04768	3.77253	2.93

Figure 5. Autoencoder bottleneck size - 64, trained for 1000 epochs (30 minutes). Dataset - Covertype.

Takeaways

We successfully showed that

- We can embed tabular data in latent space
- Conditional GANs are able to learn complex relationships in latent **space** in the context of tabular data
- Efficiency can be improved by using LCT-GAN
- Latent embeddings hold a lot of potential and can be further optimized.

References

- [1] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, "Ctab-gan: Effective table data synthesizing," pp. 97–112, 17–19 Nov 2021. [Online]. Available: https://proceedings.mlr.press/v157/zhao21a.html
- [2] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, "Improved training of wasserstein gans," CoRR, vol. abs/1704.00028, 2017. [Online]. Available: http://arxiv.org/abs/1704.00028
- [3] G. E. Hinton and R. S. Zemel, "Autoencoders, minimum description length and helmholtz free energy," in *Proceedings of the 6th* International Conference on Neural Information Processing Systems, ser. NIPS'93. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993, p. 3-10.

