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Supervised machine learning classifiers often assume that data in the train and
test sets follow the same probability distribution. Sample selection bias occurs
in many real-life situations and causes this assumption to fail, which diminishes
the prediction ability of the classifier.
Importance weighting corrects the discrepancy in the two distributions by
assigning weights to the cost of error of each train point. It does so by using
unlabeled data from the dataset to which it adapts.
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Research Question: How effective is importance weighting in
mitigating sample selection bias when the unlabeled data is sourced
from the underlying domain instead of a particular test set ?

Literature approach: adapt train set to a particular test set.
→ non-generalizable to different test sets, fails for small test set sizes

New approach: adapt train set to the underlying domain of the data.

Datasets: synthetic, binary classification, balanced, two features

Sampling bias depends on label 𝒚. Vary class proportions in the train set from
50-50% to 2-98% .

Sampling bias depends on feature vector 𝒙 = 𝒙𝟏, 𝒙𝟐 . Select samples closer to
certain points with coordinates (∆𝑥1

, ∆𝑥2
) in the 2D space described by 𝑥:

𝑃 𝑠 = 1 𝑥 =  𝑒−𝑏 ∗ ( 𝑥1 − ∆𝑥1 +|𝑥2 − ∆𝑥2|)

Reduce train set size from 100% to 2%.

Figure 1: Learning approaches for domain adaptation based on the

provenance of the unlabeled train data. Our research uses approach (b).

Figure 6: Classification performance on a feature-based sampling

scheme for varying train sample sizes.

Figure 8: Domain adaptation performance for different feature dimensions. Three sampling schemes are used.

• KMM and KLIEP initially perform on par with the optimum and then significantly outperform the unweighted classifier on all datasets.
• Their performance seems to be affected by the overlapping class regions (→majority class outweighs the minority class).

- Adaptation ability for more distanced clusters is generally better.
- Adaptation ability for different train set sizes does not change.

• Assigning class weights improves accuracy of both the weighted and unweighted classifiers up to the optimum.

Figure 2: A visualization of the synthetic classification datasets used in the experiments. Class 1 is

marked in blue and class 2 in red. Figure 4: Classification performance on a label-based sampling scheme. Figure 5: Domain adaptation performance for more versus less overlapping classes.

Figure 7: Accuracy difference between the optimal (domain) and importance-weighted classifiers as a

function of the bias impact factor 𝒏 (used for varying the values of 𝒃) and the proportion of the

original train set size (400 samples). The original values of 𝒃 used in the sampling scheme are varied as

follows: (a) 𝒃 ∗ 𝟏. 𝟓𝒏 for class 1 and 𝒃 ∗ 𝟏. 𝟑𝒏 for class 2; (b) 𝒃 ∗ 𝟐. 𝟑𝒏 for both classes; (c) 𝒃 ∗ 𝟐𝒏 for

both classes. Lighter colors indicate higher differences, so poorer adaptation performance.

• KMM and KLIEP initially perform on par with the optimum and then significantly outperform the unweighted classifier on all datasets.
• The performance of KMM and KLIEP greatly degrades with a decreasing train sample size.

The effect of sample size on the accuracy curve is non-linear: first close to optimum, then slow decline, and finally sharp decrease.
• Sampling bias intensity is an important confounding factor of the decrease in performance under a reduced train sample size.

• KMM greatly affected by high-dimensional data for all three types of bias.
- “Strength” of the biased sampling scheme is not necessarily correlated with the impact of high-dimensionality.
- A biased sampling scheme including labels does not impact much more than one based solely on the feature space.

• KLIEP does not show performance fluctuations under high-dimensional data on any of the biasing schemes.
However, its performance is generally poor throughout the experiment (scores in range [0.39, 7.74]).

Generate random binary classification, balanced datasets for different feature
sizes (10, 20, 30, 40, 50).
Use multiple sample(𝑠)-feature(𝑓) functions to ensure an adequate train set size:
𝑠 = 𝑓 ∗ 50, 𝑠 = 𝑓 ∗ 100, 𝑠 = 𝑓2 ∗ 5.

Sampling bias based on:
a) the most important feature only
b) all features while maintaining class balance
c) all features without maintained class balance

Metric: percentual domain adaptation (%) = 100 ∗
𝐴𝑐𝑐𝐼𝑊 − 𝐴𝑐𝑐𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

𝐴𝑐𝑐𝑜𝑝𝑡𝑖𝑚𝑎𝑙 − 𝐴𝑐𝑐𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 

Scenarios commonly known for posing difficulties to importance weighting:
➢ Unequal conditional probabilities of source and target domains

i.e. 𝑃𝑆 𝑦 𝑥 ≠ 𝑃𝑇(𝑦|𝑥)

➢ Small train sample size
➢ High-dimensional data

1) Importance weighting is not a one-size-fits-all solution.

2) Theoretical performance bounds for importance weighting do not hold
anymore when the fundamental assumption of equal conditional probabilities is
violated.

3) a) Some methods can still significantly improve classification even when the
fundamental assumption made by importance weighting is violated.

3) b) Degree of overlap between classes seems to influence adaptation ability
in the scenario above.

4) A small train set size negatively influences adaptation ability. However, the
“intensity” of the sampling bias is equally important.

5) Curse of dimensionality is not universal for importance weighting.

Figure 3: Probability density function of the synthetic datasets, before and after applying

the biasing scheme. The points with coordinates (∆𝒙𝟏
, ∆𝒙𝟐

) used in the biasing scheme are

marked in yellow for class 1 (blue) and in green for class 2 (red).

Evaluation framework applied to two importance weighting techniques: 
Kernel Mean Matching (KMM) and Kullback-Leibler Estimation Procedure (KLIEP).
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