]
TU Delft

1. Disjunctive

Schedule n tasks on one machine such that no tasks overlap
e Task 1: start_times = [0,3], duration=5
e Task 2: start_times =[2,4], duration=1

Example of an earliest schedule with disjunctive constraint:

‘ ‘ 2 ‘| 1 ‘
>
2 3 8 time
Edge-finding rule: est_(Q+i) + p_(Q+i) > lct_Q » Q <<
Update rule: Q <<i->est_i>2ect_Q

Goal: identify pairs (Q, i), update bounds of tasks

2. Explanations

Reason for which propagator made a decision. Example:

e Variables: x € [0,10], y € [0,10]

e Constraint: x+y>=5

e Explanation: [x ==1] - [y >=4]
Used to learn nogoods - Ensure the same conflict never
happens again in the future. » Lazy Clause Generation
Conflict windows: Explanations for scheduling problems
Idea: extend variable domains as much as possible, with the
condition that the solution remains infeasible.
Why? - If the interval is larger, it helps us by learning more
general clauses, which can stick around for longer.

3. Research Question

What is the impact on performance of using explanations on
an edge-finding propagator for the disjunctive constraint,
implemented in a LCG solver (Pumpkin)?

Subquestions:
e What strategies can be used to generate explanations?
e How can edge-finding be adapted to record explanations?

Goal: Explore multiple explanation strategies,
benchmark their performance

Evaluating the impact of explanations on the performance of an

Edge-Finding propagator for the Disjunctive Constraint

Author: Radu Andrei Vasile
Email: ra.vasile-l@student.tudelft.nl

5. Results

Number of conflicts

Number of Conflicts Comparison Across Approaches

Average Literal Block Distance Comparison Across Approaches

Do omipasition

Runtime*

Runtime (Seconds) COMParison ACFEss Approaches

Total Runtime**

Total Runtime (minutes) Comparison Across Approaches

T
,_"t\
=
H
E
=
1
& 4
=
-
ol— - L — k_
21115

orbd1-10 Hlomo1-10 15 Em01-10

*Runtime (in seconds) until optimal solution found, not until finished execution

**Runtime (in minutes) until optimality is proven. On first instance, execution
times out for decomposition (>20 minutes) and was removed for scale.

Supervisor: Imko Marijnissen
Responsible professor: Dr. Emir Demirovic

4. Explored variants

Decomposition: Baseline.
Naive: Conjunction of bounds of all variables.

Overload: Lift bounds for variables that cause conflict.

Overload + Edge-Finding: Only consider variables
directly responsible for propagation (Q).

Explanation formulas adapted from previous work [1]

NEW: Extension to Edge-Finding [2] - Modified
algorithm to allow generation of explanations in O(n).

6. Conclusions

Edge-Finding explanations (red) do provide a
significant improvement in performance.

Despite additional complexity, final variant (red)
performs, on average, 7 times better than Naive
(orange).

Overload (green) slightly outperforms Naive (orange)
Decomposition (blue) competes with Naive &
Overload.

Decomposition (blue) struggles at proving optimality

7. Future Work

Explore/Discover other explanation strategies
Compare results against other Disjunctive
propagators.

Further investigate surprising results achieved by
decomposition.

References

[1] Petr Vilim. Computing explanations for the unary resource
constraint. In Integration of Al and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR
2005), volume 3524, pages 396 — 409, 2005.

[2] Petr Vilim. Global constraints in scheduling. Ph.d. thesis, Univerzita
Karlova, Matematicko-fyzikalni fakulta, 2007.
https://dspace.cuni.cz/bitstream/handle/20.500.11956/12252/140038
772.pdf.

