
References
[1] Petr Vilím. Computing explanations for the unary resource
constraint. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR
2005), volume 3524, pages 396 – 409, 2005.
[2] Petr Vilím. Global constraints in scheduling. Ph.d. thesis, Univerzita
Karlova, Matematicko-fyzikální fakulta, 2007.
https://dspace.cuni.cz/bitstream/handle/20.500.11956/12252/140038
772.pdf.

Supervisor: Imko Marijnissen
Responsible professor: Dr. Emir Demirović

Evaluating the impact of explanations on the performance of an
Edge-Finding propagator for the Disjunctive Constraint

Author: Radu Andrei Vasile
Email: r.a.vasile-1@student.tudelft.nl

2 1
2 3 time8

Number of conflicts

Average LBD

Runtime*

4. Explored variants
Decomposition: Baseline.
Naive: Conjunction of bounds of all variables.
Overload: Lift bounds for variables that cause conflict.
Overload + Edge-Finding: Only consider variables
directly responsible for propagation (Ω).

Explanation formulas adapted from previous work [1]

NEW: Extension to Edge-Finding [2] - Modified
algorithm to allow generation of explanations in O(n).

6. Conclusions

1. Disjunctive

3. Research Question
What is the impact on performance of using explanations on
an edge-finding propagator for the disjunctive constraint,
implemented in a LCG solver (Pumpkin)?

5. Results

Goal: Explore multiple explanation strategies,
benchmark their performance

Task 1: start_times = [0,3], duration = 5
Task 2: start_times = [2,4], duration = 1

Example of an earliest schedule with disjunctive constraint:

Edge-finding rule: est_(Ω+i) + p_(Ω+i) > lct_Ω → Ω << i

Goal: identify pairs (Ω, i), update bounds of tasks
Update rule: Ω << i → est_i ≥ ect_Ω

Schedule n tasks on one machine such that no tasks overlap

Variables: x ∈ [0,10], y ∈ [0,10]
Constraint: x + y >= 5
Explanation: [x == 1] → [y >= 4]

Reason for which propagator made a decision. Example:

2. Explanations

Conflict windows: Explanations for scheduling problems

Used to learn nogoods - Ensure the same conflict never
happens again in the future. → Lazy Clause Generation

Idea: extend variable domains as much as possible, with the
condition that the solution remains infeasible.
Why? → If the interval is larger, it helps us by learning more
general clauses, which can stick around for longer.

Subquestions:
What strategies can be used to generate explanations?
How can edge-finding be adapted to record explanations?

*Runtime (in seconds) until optimal solution found, not until finished execution

Total Runtime**

**Runtime (in minutes) until optimality is proven. On first instance, execution
times out for decomposition (>20 minutes) and was removed for scale.

Edge-Finding explanations (red) do provide a
significant improvement in performance.
Despite additional complexity, final variant (red)
performs, on average, 7 times better than Naive
(orange).
Overload (green) slightly outperforms Naive (orange)
Decomposition (blue) competes with Naive &
Overload.
Decomposition (blue) struggles at proving optimality

7. Future Work
Explore/Discover other explanation strategies
Compare results against other Disjunctive
propagators.
Further investigate surprising results achieved by
decomposition.

