Approximating hard physical transitions for haptic bilateral teleoperation

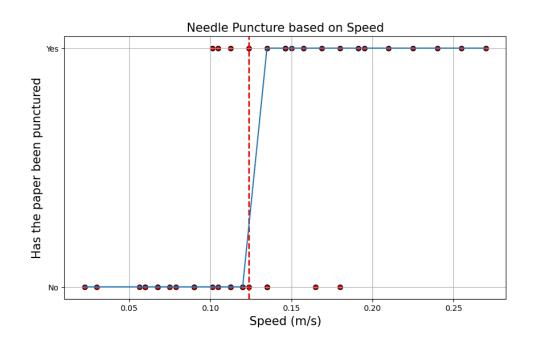
Author: Daniel de Klein Responsible professor:
Ranga Rao Venkatesha Prasad

Supervisor; Kees Kroep

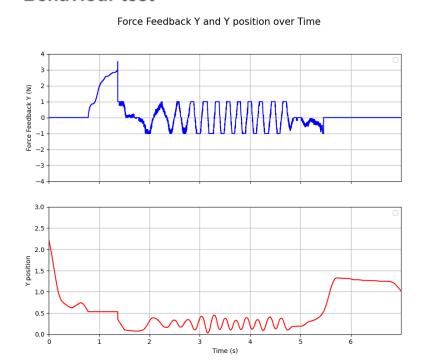
1. Introduction

- What if you want to do a task while you are in another room?
- Haptic bilateral teleoperation is used to accomplish this goal, however network delays are a problem.
- Network delays could be problematic when a certain task contains transitioning of a physical state.
- Predictive force feedback can be used to mitigate this problem.
- Research question: Can we approximate hard physical transitions to get satisfactory force feedback for haptic bilateral teleoperation?
- This is done by:
 - Modelling the puncturing of paper with a needle.
 - o Test the behaviour of this model.
 - Apply delays simulating the network delay of the robot and do an user study.

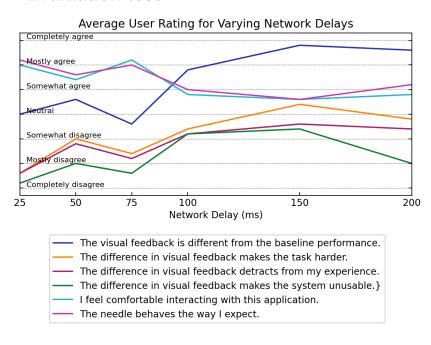
3. Methodology


- Physical testing
 - o Apply force on real paper with a needle
 - Get indication of force threshold
- Model creation:
 - Implement force threshold mechanism that when breached transitions from not puncturing to puncturing.
 - Applied friction when needle moves in paper
 - Markings for punctured spots
 - Add delays to the model to simulate robot network delays
- Behaviour testing:
 - Test model if its behaviour aligns with logic
 - The Novint Falcon is used for this
- User study:
 - Add delays to the model:
 25, 50, 75, 100, 150 and 200
 - Randomly generated seed creates a random order for each user

5. Conclusions


- The model behaves properly like predicted.
- Does not perfectly imitate the feeling of puncturing a piece of paper, but does capture the essence of hard physical transitioning
- User study shows with the increase in delay that:
 - that the difficulty goes up but it does not become unusable
 - It stays relatively comfortable for users to use.
- The results conclude that hard physical transitions can be approximated to get force feedback in haptic bilateral teleoperation

4. Results


Physical test

Behaviour test

Evaluation test

